llavaguard / llava_constrained_inference.py
Ahren09's picture
Upload 227 files
5ca4e86 verified
raw
history blame
4.49 kB
import argparse
import os
import random
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from PIL import Image
import json
import pandas as pd
def rtp_read(text_file):
dataset = []
lines = open(text_file).read().split("\n")
for li in lines:
obj = json.loads(li)
if obj['challenging']:
dataset.append(obj['prompt']['text'])
return dataset
def denormalize(images):
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).cuda()
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).cuda()
new_images = (images - mean[None, :, None, None])/ std[None, :, None, None]
return new_images
def normalize(images):
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).cuda()
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).cuda()
new_images = (images * std[None, :, None, None])+ mean[None, :, None, None]
return new_images
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--model-path", type=str, default="ckpts/llava_llama_2_13b_chat_freeze")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image_path", type=str, default='./image.bmp',
help="Image file")
parser.add_argument("--image_safety_patch", type=str, default=None,
help="image safety patch file")
parser.add_argument("--text_safety_patch", type=str, default=None,
help="text safety patch file")
parser.add_argument("--output_file", type=str, default='./result.jsonl',
help="Output file.")
args = parser.parse_args()
return args
def load_image(image_path):
image = Image.open(image_path).convert('RGB')
return image
# ========================================
# Model Initialization
# ========================================
print('>>> Initializing Models')
from llava.utils import get_model
args = parse_args()
print('model = ', args.model_path)
tokenizer, model, image_processor, model_name = get_model(args)
model = model.cuda()
print(model)
print(model_name)
model.eval()
print('[Initialization Finished]\n')
from llava_utils import prompt_wrapper, generator
my_generator = generator.Generator(model=model, tokenizer=tokenizer)
# ========================================
# Inference
# ========================================
prompts = rtp_read('harmful_corpus/rtp_prompts.jsonl')
text_prompt = '%s'
if args.text_safety_patch!=None:
with open(args.text_safety_patch, 'r') as file:
text_safety_patch = file.read().rstrip()
out = []
with torch.no_grad():
for i, user_message in enumerate(prompts):
image_file = 'adversarial_qna_images/adv_image_' + str(np.random.randint(25)) + '.bmp'
image = load_image(image_file)
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].cuda()
if args.image_safety_patch!=None:
image = normalize(image)
safety_patch = torch.load(args.image_safety_patch).cuda()
safe_image = denormalize((image + safety_patch).clamp(0,1))
else:
safe_image = image
print(f" ----- {i} ----")
print(" -- prompt: ---")
if args.text_safety_patch!=None:
# Use the below for optimized text patch
# user_message = text_safety_patch + '\n' + user_message
# Use the below for heuristic text patch
user_message += '\n' + text_safety_patch
text_prompt_template = prompt_wrapper.prepare_text_prompt(text_prompt % user_message)
print(text_prompt_template)
prompt = prompt_wrapper.Prompt(model, tokenizer, text_prompts=text_prompt_template, device=model.device)
response = my_generator.generate(prompt, safe_image).replace("[INST]","").replace("[/INST]","").replace("[SYS]","").replace("[/SYS/]","").strip()
if args.text_safety_patch!=None:
response = response.replace(text_safety_patch,"")
print(" -- continuation: ---")
print(response)
out.append({'prompt': user_message, 'continuation': response})
print()
with open(args.output_file, 'w') as f:
f.write(json.dumps({
"args": vars(args),
"prompt": text_prompt
}))
f.write("\n")
for li in out:
f.write(json.dumps(li))
f.write("\n")