Spaces:
Runtime error
Runtime error
import argparse | |
import torch | |
import os | |
from torchvision.utils import save_image | |
import json | |
import numpy as np | |
from PIL import Image | |
def data_read(text_file,K=200): | |
dataset = [] | |
# lines = open(text_file).read().split("\n") | |
for count,line in enumerate(open(text_file, 'r')): | |
obj = json.loads(line) | |
cur_str = obj['rejected_response'] | |
if len(cur_str)!=0: | |
dataset.append(cur_str) | |
return dataset[-K:] | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Demo") | |
parser.add_argument("--model-path", type=str, default="ckpts/llava_llama_2_13b_chat_freeze") | |
parser.add_argument("--model-base", type=str, default=None) | |
parser.add_argument("--gpu_id", type=int, default=0, help="specify the gpu to load the model.") | |
parser.add_argument("--n_iters", type=int, default=5000, help="specify the number of iterations for attack.") | |
parser.add_argument('--eps', type=int, default=64, help="epsilon of the attack budget") | |
parser.add_argument('--alpha', type=int, default=1, help="step_size of the attack") | |
parser.add_argument("--save_dir", type=str, default='output', | |
help="save directory") | |
args = parser.parse_args() | |
return args | |
def load_image(image_path): | |
image = Image.open(image_path).convert('RGB') | |
return image | |
# ======================================== | |
# Model Initialization | |
# ======================================== | |
print('>>> Initializing Models') | |
from llava.utils import get_model | |
args = parse_args() | |
print('model = ', args.model_path) | |
tokenizer, model, image_processor, model_name = get_model(args) | |
model.resize_token_embeddings(len(tokenizer)) | |
model.eval() | |
print('[Initialization Finished]\n') | |
if not os.path.exists(args.save_dir): | |
os.mkdir(args.save_dir) | |
import csv | |
#read the small corpus including harmful content, which is needed for safety patch generation | |
lines = open('harmful_corpus/harmful_strings.csv').read().split("\n") | |
neg_targets = [li for li in lines if len(li)>0] | |
#normal input prompt just in case | |
pos_targets = data_read('harmful_corpus/red_teaming_prompts.jsonl',K=len(neg_targets)) | |
from llava_utils import visual_defender | |
print('device = ', model.device) | |
my_defender = visual_defender.Defender(args, model, tokenizer, pos_targets, neg_targets, device=model.device, image_processor=image_processor) | |
template_img = 'unconstrained_attack.bmp' | |
image = load_image(template_img) | |
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].cuda() | |
from llava_utils import prompt_wrapper | |
text_prompt_template = prompt_wrapper.prepare_text_prompt('') | |
print(text_prompt_template) | |
safety_patch = my_defender.defense_constrained(text_prompt_template, | |
img=image, batch_size=2, | |
num_iter=args.n_iters, alpha=args.alpha / 255, | |
epsilon=args.eps / 255) | |
#save_image(safety_patch, '%s/safety_patch.bmp' % (args.save_dir)) | |
torch.save(safety_patch, '%s/safety_patch.pt' % args.save_dir) | |
print('[Done]') | |