ResearchCopilot / app.py
Ajeya95's picture
Update app.py
318fcdf verified
# ResearchCopilot - Multi-Agent Research System
# Track 3: Agentic Demo Showcase - Gradio MCP Hackathon 2025
import gradio as gr
import asyncio
import json
import time
import os
from datetime import datetime
from typing import Dict, List, Optional, Tuple
from dataclasses import dataclass, asdict
from enum import Enum
import logging
import re
from abc import ABC, abstractmethod
# Load environment variables from .env file
# try:
# from dotenv import load_dotenv
# load_dotenv()
# print("βœ… Environment variables loaded from .env file")
# except ImportError:
# print("⚠️ python-dotenv not installed. Install with: pip install python-dotenv")
# except Exception as e:
# print(f"⚠️ Could not load .env file: {e}")
# Import enhanced agents with real API integrations
try:
from enhanced_agents import EnhancedRetrieverAgent, EnhancedSummarizerAgent, EnhancedCitationAgent, SearchResult
ENHANCED_AGENTS_AVAILABLE = True
print("βœ… Enhanced agents loaded successfully")
except ImportError:
print("❌ Enhanced agents not found - using basic agents with mock data")
ENHANCED_AGENTS_AVAILABLE = False
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Debug: Check if API keys are loaded
print("\nπŸ”‘ API Key Status:")
print(f"Perplexity API: {'βœ… Loaded' if os.getenv('PERPLEXITY_API_KEY') else '❌ Missing'}")
print(f"Google API: {'βœ… Loaded' if os.getenv('GOOGLE_API_KEY') else '❌ Missing'}")
print(f"Google Search ID: {'βœ… Loaded' if os.getenv('GOOGLE_SEARCH_ENGINE_ID') else '❌ Missing'}")
print(f"Claude API: {'βœ… Loaded' if os.getenv('ANTHROPIC_API_KEY') else '❌ Missing'}")
print(f"OpenAI API: {'βœ… Loaded (fallback)' if os.getenv('OPENAI_API_KEY') else '❌ Missing'}")
print("=" * 50)
class AgentStatus(Enum):
IDLE = "idle"
THINKING = "thinking"
WORKING = "working"
COMPLETED = "completed"
ERROR = "error"
@dataclass
class ResearchTask:
id: str
description: str
priority: int
dependencies: List[str]
status: str = "pending"
results: Optional[Dict] = None
created_at: str = None
def __post_init__(self):
if self.created_at is None:
self.created_at = datetime.now().isoformat()
@dataclass
class AgentMessage:
agent_id: str
message: str
timestamp: str
status: AgentStatus
data: Optional[Dict] = None
class BaseAgent(ABC):
def __init__(self, agent_id: str, name: str):
self.agent_id = agent_id
self.name = name
self.status = AgentStatus.IDLE
self.messages = []
def log_message(self, message: str, data: Optional[Dict] = None):
msg = AgentMessage(
agent_id=self.agent_id,
message=message,
timestamp=datetime.now().isoformat(),
status=self.status,
data=data
)
self.messages.append(msg)
logger.info(f"[{self.name}] {message}")
return msg
@abstractmethod
async def process(self, input_data: Dict) -> Dict:
pass
class PlannerAgent(BaseAgent):
def __init__(self):
super().__init__("planner", "Research Planner")
async def process(self, input_data: Dict) -> Dict:
self.status = AgentStatus.THINKING
query = input_data.get("query", "")
self.log_message(f"Analyzing research query: {query}")
await asyncio.sleep(1) # Simulate thinking time
self.status = AgentStatus.WORKING
# Simulate intelligent task breakdown
tasks = self._create_research_plan(query)
self.log_message(f"Created research plan with {len(tasks)} tasks")
self.status = AgentStatus.COMPLETED
return {
"tasks": tasks,
"strategy": self._generate_strategy(query),
"estimated_time": len(tasks) * 2,
"complexity": self._assess_complexity(query)
}
def _create_research_plan(self, query: str) -> List[ResearchTask]:
# Intelligent task decomposition based on query analysis
tasks = []
# Core research task
tasks.append(ResearchTask(
id="core_search",
description=f"Primary research on: {query}",
priority=1,
dependencies=[]
))
# If query mentions specific domains, add specialized searches
if any(term in query.lower() for term in ["academic", "paper", "study", "research"]):
tasks.append(ResearchTask(
id="academic_search",
description="Search academic databases and papers",
priority=2,
dependencies=["core_search"]
))
# If query is about recent events, add news search
if any(term in query.lower() for term in ["recent", "latest", "current", "2024", "2025"]):
tasks.append(ResearchTask(
id="news_search",
description="Search for recent news and updates",
priority=2,
dependencies=["core_search"]
))
# Always add background context
tasks.append(ResearchTask(
id="context_search",
description="Gather background context and definitions",
priority=3,
dependencies=["core_search"]
))
return tasks
def _generate_strategy(self, query: str) -> str:
if len(query.split()) < 5:
return "Focused search strategy for specific topic"
elif any(word in query.lower() for word in ["compare", "vs", "versus", "difference"]):
return "Comparative analysis strategy"
elif "how" in query.lower():
return "Process-oriented research strategy"
else:
return "Comprehensive exploratory strategy"
def _assess_complexity(self, query: str) -> str:
word_count = len(query.split())
if word_count < 5:
return "Low"
elif word_count < 10:
return "Medium"
else:
return "High"
class RetrieverAgent(BaseAgent):
def __init__(self):
super().__init__("retriever", "Information Retriever")
self.search_apis = ["perplexity", "google", "academic"]
# Use enhanced agent if available
if ENHANCED_AGENTS_AVAILABLE:
self.enhanced_agent = None
async def process(self, input_data: Dict) -> Dict:
self.status = AgentStatus.THINKING
task = input_data.get("task")
self.log_message(f"Processing retrieval task: {task.description}")
self.status = AgentStatus.WORKING
# Use enhanced agents with real APIs if available
if ENHANCED_AGENTS_AVAILABLE:
try:
async with EnhancedRetrieverAgent() as enhanced_retriever:
# Try real API search first
if "academic" in task.id:
sources = await enhanced_retriever.search_academic(task.description, 5)
elif "news" in task.id:
sources = await enhanced_retriever.search_google(f"recent news {task.description}", 5)
else:
# Use Perplexity for main searches
sources = await enhanced_retriever.search_perplexity(task.description, 5)
if not sources: # Fallback to Google
sources = await enhanced_retriever.search_google(task.description, 5)
if sources:
self.log_message(f"Retrieved {len(sources)} sources using real APIs")
self.status = AgentStatus.COMPLETED
# Convert SearchResult objects to dict format
results = []
for source in sources:
results.append({
"title": source.title,
"url": source.url,
"snippet": source.snippet,
"source_type": source.source_type,
"relevance": source.relevance
})
return {
"sources": results,
"search_strategy": self._get_search_strategy(task),
"confidence": self._calculate_confidence(results)
}
except Exception as e:
self.log_message(f"API search failed, using mock data: {str(e)}")
# Fallback to mock data
results = await self._perform_searches(task)
self.log_message(f"Retrieved {len(results)} sources (mock data)")
self.status = AgentStatus.COMPLETED
return {
"sources": results,
"search_strategy": self._get_search_strategy(task),
"confidence": self._calculate_confidence(results)
}
async def _perform_searches(self, task: ResearchTask) -> List[Dict]:
# Simulate different search strategies based on task type
await asyncio.sleep(2) # Simulate API call time
# Mock search results with realistic structure
results = []
if "academic" in task.id:
results.extend([
{
"title": "Academic Paper on Topic",
"url": "https://arxiv.org/paper/123",
"snippet": "Comprehensive study showing key findings...",
"source_type": "academic",
"relevance": 0.95
},
{
"title": "Research Publication",
"url": "https://journals.example.com/article/456",
"snippet": "Peer-reviewed research demonstrating...",
"source_type": "academic",
"relevance": 0.88
}
])
if "news" in task.id:
results.extend([
{
"title": "Recent Development in Field",
"url": "https://news.example.com/article/789",
"snippet": "Latest updates show significant progress...",
"source_type": "news",
"relevance": 0.82
}
])
# Always add some general results
results.extend([
{
"title": "Comprehensive Overview",
"url": "https://example.com/overview",
"snippet": "Detailed analysis covering multiple aspects...",
"source_type": "general",
"relevance": 0.79
},
{
"title": "Expert Analysis",
"url": "https://expert.example.com/analysis",
"snippet": "Professional insights and recommendations...",
"source_type": "expert",
"relevance": 0.85
}
])
return results
def _get_search_strategy(self, task: ResearchTask) -> str:
if "academic" in task.id:
return "Academic database search with peer-review filter"
elif "news" in task.id:
return "Recent news aggregation with date filtering"
else:
return "Multi-source comprehensive search"
def _calculate_confidence(self, results: List[Dict]) -> float:
if not results:
return 0.0
avg_relevance = sum(r.get("relevance", 0) for r in results) / len(results)
source_diversity = len(set(r.get("source_type") for r in results))
return min(1.0, avg_relevance * 0.7 + (source_diversity / 5) * 0.3)
class SummarizerAgent(BaseAgent):
def __init__(self):
super().__init__("summarizer", "Content Summarizer")
async def process(self, input_data: Dict) -> Dict:
self.status = AgentStatus.THINKING
sources = input_data.get("sources", [])
self.log_message(f"Summarizing {len(sources)} sources")
self.status = AgentStatus.WORKING
# Use enhanced agents with real APIs if available
if ENHANCED_AGENTS_AVAILABLE:
try:
# Create enhanced summarizer (no async context manager needed)
enhanced_summarizer = EnhancedSummarizerAgent()
# Convert dict sources to SearchResult objects
search_results = []
for source in sources:
search_results.append(SearchResult(
title=source.get("title", ""),
url=source.get("url", ""),
snippet=source.get("snippet", ""),
source_type=source.get("source_type", "web"),
relevance=source.get("relevance", 0.5)
))
# Use synchronous call (KarmaCheck style)
summary_result = enhanced_summarizer.summarize_with_claude(
search_results,
"Research query analysis"
)
if summary_result and "summary" in summary_result:
# Get the actual API used from the result
api_used = summary_result.get("api_used", "AI API")
self.log_message(f"Summary generated using {api_used}")
self.status = AgentStatus.COMPLETED
return summary_result
except Exception as e:
self.log_message(f"API summarization failed, using mock summary: {str(e)}")
# Fallback to mock summary
await asyncio.sleep(2) # Simulate processing time
summary = self._generate_summary(sources)
key_points = self._extract_key_points(sources)
self.log_message("Summary generation completed (mock data)")
self.status = AgentStatus.COMPLETED
return {
"summary": summary,
"key_points": key_points,
"word_count": len(summary.split()),
"coverage_score": self._calculate_coverage(sources)
}
def _generate_summary(self, sources: List[Dict]) -> str:
# Simulate intelligent summarization
if not sources:
return "No sources available for summarization."
summary_parts = []
# Group sources by type
academic_sources = [s for s in sources if s.get("source_type") == "academic"]
news_sources = [s for s in sources if s.get("source_type") == "news"]
general_sources = [s for s in sources if s.get("source_type") == "general"]
if academic_sources:
summary_parts.append(
"Academic research indicates significant developments in this field. "
"Peer-reviewed studies demonstrate consistent findings across multiple "
"research groups, with high confidence in the methodological approaches used."
)
if news_sources:
summary_parts.append(
"Recent developments show ongoing progress and public interest. "
"Current trends suggest continued evolution in this area with "
"practical implications for stakeholders."
)
if general_sources:
summary_parts.append(
"Comprehensive analysis reveals multiple perspectives and approaches. "
"Expert opinions converge on key principles while acknowledging "
"areas that require further investigation."
)
return " ".join(summary_parts)
def _extract_key_points(self, sources: List[Dict]) -> List[str]:
key_points = []
if any(s.get("source_type") == "academic" for s in sources):
key_points.append("Peer-reviewed research supports main conclusions")
if any(s.get("relevance", 0) > 0.9 for s in sources):
key_points.append("High-relevance sources identified")
if len(sources) > 3:
key_points.append("Multiple independent sources confirm findings")
key_points.extend([
"Cross-referenced information for accuracy",
"Balanced perspective from diverse sources",
"Current information reflects latest developments"
])
return key_points
def _calculate_coverage(self, sources: List[Dict]) -> float:
if not sources:
return 0.0
source_types = set(s.get("source_type") for s in sources)
high_relevance = sum(1 for s in sources if s.get("relevance", 0) > 0.8)
coverage = (len(source_types) / 4) * 0.5 + (high_relevance / len(sources)) * 0.5
return min(1.0, coverage)
class CitationAgent(BaseAgent):
def __init__(self):
super().__init__("citation", "Citation Generator")
async def process(self, input_data: Dict) -> Dict:
self.status = AgentStatus.THINKING
sources = input_data.get("sources", [])
self.log_message(f"Generating citations for {len(sources)} sources")
self.status = AgentStatus.WORKING
# Use enhanced citation agent if available
if ENHANCED_AGENTS_AVAILABLE:
try:
enhanced_citation = EnhancedCitationAgent()
# Convert dict sources to SearchResult objects
search_results = []
for source in sources:
search_results.append(SearchResult(
title=source.get("title", ""),
url=source.get("url", ""),
snippet=source.get("snippet", ""),
source_type=source.get("source_type", "web"),
relevance=source.get("relevance", 0.5)
))
citation_result = enhanced_citation.generate_citations(search_results)
if citation_result:
self.log_message("Citations generated with multiple formats")
self.status = AgentStatus.COMPLETED
return citation_result
except Exception as e:
self.log_message(f"Enhanced citation failed, using basic: {str(e)}")
# Fallback to basic citation
await asyncio.sleep(1) # Simulate processing time
citations = self._generate_citations(sources)
bibliography = self._create_bibliography(sources)
self.log_message("Citation generation completed")
self.status = AgentStatus.COMPLETED
return {
"citations": citations,
"bibliography": bibliography,
"citation_count": len(citations),
"formats": ["APA", "MLA", "Chicago"]
}
def _generate_citations(self, sources: List[Dict]) -> List[Dict]:
citations = []
for i, source in enumerate(sources, 1):
citation = {
"id": i,
"apa": self._format_apa(source),
"mla": self._format_mla(source),
"chicago": self._format_chicago(source),
"source": source
}
citations.append(citation)
return citations
def _format_apa(self, source: Dict) -> str:
title = source.get("title", "Unknown Title")
url = source.get("url", "")
return f"{title}. Retrieved from {url}"
def _format_mla(self, source: Dict) -> str:
title = source.get("title", "Unknown Title")
url = source.get("url", "")
return f'"{title}." Web. {datetime.now().strftime("%d %b %Y")}. <{url}>'
def _format_chicago(self, source: Dict) -> str:
title = source.get("title", "Unknown Title")
url = source.get("url", "")
return f'"{title}." Accessed {datetime.now().strftime("%B %d, %Y")}. {url}.'
def _create_bibliography(self, sources: List[Dict]) -> str:
if not sources:
return "No sources to cite."
bib_entries = []
for source in sources:
bib_entries.append(self._format_apa(source))
return "\n\n".join(bib_entries)
class ResearchOrchestrator:
def __init__(self):
self.planner = PlannerAgent()
self.retriever = RetrieverAgent()
self.summarizer = SummarizerAgent()
self.citation_gen = CitationAgent()
self.research_state = {}
self.activity_log = []
async def conduct_research(self, query: str, progress_callback=None) -> Dict:
"""Main research orchestration method"""
self.activity_log = []
self.research_state = {"query": query, "start_time": datetime.now().isoformat()}
try:
# Step 1: Planning
if progress_callback:
progress_callback("🎯 Planning research approach...", 10)
plan_result = await self.planner.process({"query": query})
self.research_state["plan"] = plan_result
self._log_activity("Planning completed", self.planner.messages[-1])
# Step 2: Information Retrieval
if progress_callback:
progress_callback("πŸ” Gathering information...", 30)
all_sources = []
tasks = plan_result["tasks"]
for i, task in enumerate(tasks):
if progress_callback:
progress_callback(f"πŸ” Processing: {task.description}", 30 + (i * 20))
retrieval_result = await self.retriever.process({"task": task})
all_sources.extend(retrieval_result["sources"])
self._log_activity(f"Retrieved sources for: {task.description}",
self.retriever.messages[-1])
self.research_state["sources"] = all_sources
# Step 3: Summarization
if progress_callback:
progress_callback("πŸ“ Analyzing and summarizing...", 70)
summary_result = await self.summarizer.process({"sources": all_sources})
self.research_state["summary"] = summary_result
self._log_activity("Summarization completed", self.summarizer.messages[-1])
# Step 4: Citation Generation
if progress_callback:
progress_callback("πŸ“š Generating citations...", 90)
citation_result = await self.citation_gen.process({"sources": all_sources})
self.research_state["citations"] = citation_result
self._log_activity("Citations generated", self.citation_gen.messages[-1])
if progress_callback:
progress_callback("βœ… Research completed!", 100)
self.research_state["completion_time"] = datetime.now().isoformat()
self.research_state["status"] = "completed"
return self.research_state
except Exception as e:
logger.error(f"Research failed: {str(e)}")
self.research_state["status"] = "error"
self.research_state["error"] = str(e)
return self.research_state
def _log_activity(self, description: str, agent_message: AgentMessage):
activity = {
"timestamp": datetime.now().isoformat(),
"description": description,
"agent": agent_message.agent_id,
"details": agent_message.message
}
self.activity_log.append(activity)
def get_activity_log(self) -> List[Dict]:
return self.activity_log
# Global orchestrator instance
orchestrator = ResearchOrchestrator()
def format_research_results(research_state: Dict) -> Tuple[str, str, str, str]:
"""Format research results for Gradio display"""
if research_state.get("status") == "error":
error_msg = f"❌ Research failed: {research_state.get('error', 'Unknown error')}"
return error_msg, "", "", ""
if research_state.get("status") != "completed":
return "Research in progress...", "", "", ""
# Format summary
summary_data = research_state.get("summary", {})
summary_text = f"""# Research Summary
{summary_data.get('summary', 'No summary available')}
## Key Findings
"""
for point in summary_data.get('key_points', []):
summary_text += f"β€’ {point}\n"
summary_text += f"""
## Research Metrics
- Sources analyzed: {len(research_state.get('sources', []))}
- Summary length: {summary_data.get('word_count', 0)} words
- Coverage score: {summary_data.get('coverage_score', 0):.2f}
"""
# Format sources
sources = research_state.get("sources", [])
sources_text = "# Sources Found\n\n"
for i, source in enumerate(sources, 1):
sources_text += f"""## {i}. {source.get('title', 'Unknown Title')}
**URL:** {source.get('url', 'N/A')}
**Type:** {source.get('source_type', 'Unknown')}
**Relevance:** {source.get('relevance', 0):.2f}
**Summary:** {source.get('snippet', 'No summary available')}
---
"""
# Format citations
citations_data = research_state.get("citations", {})
citations_text = ""
# Check if we have citations data
if citations_data and isinstance(citations_data, dict):
bibliography = citations_data.get('bibliography')
if bibliography and bibliography.strip():
citations_text += bibliography
else:
# Fallback: create bibliography from sources if citations failed
sources = research_state.get("sources", [])
if sources:
citations_text += "## Sources Referenced:\n\n"
for i, source in enumerate(sources, 1):
title = source.get("title", "Unknown Title")
url = source.get("url", "")
source_type = source.get("source_type", "web")
citations_text += f"**[{i}]** {title} \n"
citations_text += f"*Source:* {source_type.title()} \n"
citations_text += f"*URL:* {url} \n\n"
else:
citations_text += "No sources available for citation."
else:
# Create citations from sources directly
sources = research_state.get("sources", [])
if sources:
citations_text += "## Research Sources:\n\n"
for i, source in enumerate(sources, 1):
title = source.get("title", "Unknown Title")
url = source.get("url", "")
source_type = source.get("source_type", "web")
relevance = source.get("relevance", 0)
citations_text += f"**{i}.** {title} \n"
citations_text += f"**Type:** {source_type.title()} | **Relevance:** {relevance:.2f} \n"
citations_text += f"**URL:** {url} \n\n"
else:
citations_text += "No sources available for citation."
# Format activity log
activity_text = "# Research Process Log\n\n"
for activity in orchestrator.get_activity_log():
timestamp = datetime.fromisoformat(activity['timestamp']).strftime("%H:%M:%S")
activity_text += f"**{timestamp}** - {activity['description']}\n"
activity_text += f"*{activity['details']}*\n\n"
return summary_text, sources_text, citations_text, activity_text
async def conduct_research_async(query: str, progress=gr.Progress()) -> Tuple[str, str, str, str]:
"""Async wrapper for research with progress updates"""
def update_progress(message: str, percent: int):
progress(percent/100, desc=message)
research_result = await orchestrator.conduct_research(query, update_progress)
return format_research_results(research_result)
def conduct_research_sync(query: str, progress=gr.Progress()) -> Tuple[str, str, str, str]:
"""Synchronous wrapper for Gradio"""
if not query.strip():
return "Please enter a research query.", "", "", ""
# Run async function in event loop
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(conduct_research_async(query, progress))
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(
title="ResearchCopilot - Multi-Agent Research System",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
}
.research-header {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 2rem;
border-radius: 10px;
margin-bottom: 2rem;
}
.agent-status {
background: #ffffff !important;
border: 2px solid #e0e0e0;
border-radius: 8px;
padding: 1.5rem;
margin: 1rem 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.agent-status h3 {
color: #2c3e50 !important;
margin-bottom: 1rem;
font-size: 1.2rem;
}
.agent-status ul {
color: #2c3e50 !important;
list-style-type: none;
padding-left: 0;
}
.agent-status li {
color: #2c3e50 !important;
margin-bottom: 0.8rem;
padding: 0.5rem;
background: #f8f9fa;
border-radius: 4px;
border-left: 4px solid #667eea;
}
.agent-status strong {
color: #667eea !important;
}
"""
) as interface:
# Header
gr.HTML("""
<div class="research-header">
<h1>πŸ€– ResearchCopilot</h1>
<h2>Multi-Agent Research System</h2>
<p>Powered by AI agents working together to conduct comprehensive research</p>
<p><em>Track 3: Agentic Demo Showcase - Gradio MCP Hackathon 2025</em></p>
</div>
""")
# Agent Status Overview
with gr.Row():
gr.HTML("""
<div class="agent-status">
<h3>🎯 Research Agents</h3>
<ul>
<li><strong>Planner Agent:</strong> Breaks down research queries into structured tasks</li>
<li><strong>Retriever Agent:</strong> Searches multiple sources (Perplexity, Google, Academic)</li>
<li><strong>Summarizer Agent:</strong> Analyzes and synthesizes information</li>
<li><strong>Citation Agent:</strong> Generates proper academic citations</li>
</ul>
</div>
""")
# Main Interface
with gr.Row():
with gr.Column(scale=1):
query_input = gr.Textbox(
label="Research Query",
placeholder="Enter your research question (e.g., 'Latest developments in quantum computing for drug discovery')",
lines=3
)
research_btn = gr.Button(
"πŸš€ Start Research",
variant="primary",
size="lg"
)
gr.Examples(
examples=[
"Impact of artificial intelligence on healthcare diagnostics",
"Sustainable energy solutions for urban environments",
"Recent advances in quantum computing applications",
"Climate change effects on global food security",
"Blockchain technology in supply chain management"
],
inputs=query_input,
label="Example Research Queries"
)
# Results Display
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("πŸ“Š Summary"):
summary_output = gr.Markdown(
label="Research Summary",
value="Enter a research query and click 'Start Research' to begin."
)
with gr.TabItem("πŸ“š Sources"):
sources_output = gr.Markdown(
label="Sources Found",
value="Sources will appear here after research is completed."
)
with gr.TabItem("πŸ“– Citations"):
citations_output = gr.Markdown(
label="Citations & Bibliography",
value="Citations will be generated automatically."
)
with gr.TabItem("πŸ” Process Log"):
activity_output = gr.Markdown(
label="Agent Activity Log",
value="Research process will be logged here."
)
# Event Handlers
research_btn.click(
fn=conduct_research_sync,
inputs=[query_input],
outputs=[summary_output, sources_output, citations_output, activity_output],
show_progress=True
)
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; padding: 1.5rem; background: #ffffff; border: 2px solid #e0e0e0; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<p style="color: #2c3e50; font-weight: bold; margin-bottom: 0.5rem;">ResearchCopilot - Demonstrating multi-agent AI collaboration for research tasks</p>
<p style="color: #667eea; font-size: 0.9rem;">Built for the Gradio Agents & MCP Hackathon 2025 - Track 3: Agentic Demo Showcase</p>
<p style="color: #7f8c8d; font-size: 0.8rem; margin-top: 0.5rem;">Built with ❀️ using Gradio, Modal, Perplexity API, Claude API, and Multi-Agent Architecture.</p>
</div>
""")
return interface
# Launch the application
if __name__ == "__main__":
app = create_interface()
app.launch(
share=False, # Creates public URL for sharing
server_name="0.0.0.0", # Localhost access
server_port=7860,
show_error=True,
inbrowser=True # Automatically opens browser
)