Spaces:
Sleeping
Sleeping
Commit
Β·
b58981e
1
Parent(s):
9685fdc
refactor: Reduce verbosity in agent outputs and enhance message formatting in chat interface
Browse files
src/agents/bookmarks_agent.py
CHANGED
@@ -345,4 +345,7 @@ bookmarks_agent = CodeAgent(
|
|
345 |
description="Specialized agent for Chrome bookmarks operations, focusing on AI ressources folder. Extracts bookmarks from Chrome and caches them in data/ai_bookmarks_cache.json to avoid direct interaction with Chrome's raw JSON. Provides search, filtering, statistics, and cache management for AI-related bookmarks.",
|
346 |
max_steps=10,
|
347 |
additional_authorized_imports=["json", "datetime", "urllib.parse", "pathlib"],
|
|
|
|
|
|
|
348 |
)
|
|
|
345 |
description="Specialized agent for Chrome bookmarks operations, focusing on AI ressources folder. Extracts bookmarks from Chrome and caches them in data/ai_bookmarks_cache.json to avoid direct interaction with Chrome's raw JSON. Provides search, filtering, statistics, and cache management for AI-related bookmarks.",
|
346 |
max_steps=10,
|
347 |
additional_authorized_imports=["json", "datetime", "urllib.parse", "pathlib"],
|
348 |
+
# Reduce verbosity
|
349 |
+
stream_outputs=False,
|
350 |
+
max_print_outputs_length=300,
|
351 |
)
|
src/agents/categoriser_agent.py
CHANGED
@@ -540,4 +540,7 @@ categoriser_agent = CodeAgent(
|
|
540 |
description="Specializes in categorizing AI news and bookmarks into 10 predefined categories: Research & Breakthroughs, Model Releases & Updates, Tools/Frameworks/Platforms, Applications & Industry Use Cases, Regulation/Ethics/Policy, Investment/Funding/M&A, Benchmarks & Leaderboards, Community/Events/Education, Security/Privacy/Safety, and Market Trends & Analysis. Uses keyword-based categorization and provides tools for managing and searching categorized content.",
|
541 |
max_steps=10,
|
542 |
additional_authorized_imports=["json", "datetime", "re", "pathlib"],
|
|
|
|
|
|
|
543 |
)
|
|
|
540 |
description="Specializes in categorizing AI news and bookmarks into 10 predefined categories: Research & Breakthroughs, Model Releases & Updates, Tools/Frameworks/Platforms, Applications & Industry Use Cases, Regulation/Ethics/Policy, Investment/Funding/M&A, Benchmarks & Leaderboards, Community/Events/Education, Security/Privacy/Safety, and Market Trends & Analysis. Uses keyword-based categorization and provides tools for managing and searching categorized content.",
|
541 |
max_steps=10,
|
542 |
additional_authorized_imports=["json", "datetime", "re", "pathlib"],
|
543 |
+
# Reduce verbosity
|
544 |
+
stream_outputs=False,
|
545 |
+
max_print_outputs_length=300,
|
546 |
)
|
src/agents/gmail_agent.py
CHANGED
@@ -84,4 +84,6 @@ gmail_agent = CodeAgent(
|
|
84 |
description="Gmail agent specialized in reading and searching emails from habib.adoum01@gmail.com and news@alphasignal.ai only",
|
85 |
max_steps=10,
|
86 |
additional_authorized_imports=["json"],
|
|
|
|
|
87 |
)
|
|
|
84 |
description="Gmail agent specialized in reading and searching emails from habib.adoum01@gmail.com and news@alphasignal.ai only",
|
85 |
max_steps=10,
|
86 |
additional_authorized_imports=["json"],
|
87 |
+
stream_outputs=False,
|
88 |
+
max_print_outputs_length=300,
|
89 |
)
|
src/agents/manager_agent.py
CHANGED
@@ -47,4 +47,7 @@ manager_agent = CodeAgent(
|
|
47 |
additional_authorized_imports=["json"],
|
48 |
# Add planning to help with complex queries
|
49 |
planning_interval=3, # Plan every 3 steps to maintain focus
|
|
|
|
|
|
|
50 |
)
|
|
|
47 |
additional_authorized_imports=["json"],
|
48 |
# Add planning to help with complex queries
|
49 |
planning_interval=3, # Plan every 3 steps to maintain focus
|
50 |
+
# Reduce verbosity - disable streaming outputs and minimize console display
|
51 |
+
stream_outputs=False, # Disable live streaming of thoughts to terminal
|
52 |
+
max_print_outputs_length=500, # Limit output length to reduce terminal noise
|
53 |
)
|
src/interfaces/gradio_interface.py
CHANGED
@@ -307,15 +307,31 @@ Thanks to **Modal Labs**, **Hugging Face**, **Nebius**, **Anthropic**, **OpenAI*
|
|
307 |
return about_tab
|
308 |
|
309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
def validate_message_history(history):
|
311 |
"""Validate and return properly formatted message history"""
|
312 |
validated = []
|
313 |
for msg in history:
|
314 |
if isinstance(msg, dict) and "role" in msg and "content" in msg:
|
315 |
-
# Ensure content is a string
|
316 |
-
|
317 |
-
|
318 |
-
|
|
|
|
|
319 |
else:
|
320 |
print(f"Warning: Invalid message format detected: {msg}")
|
321 |
return validated
|
@@ -336,20 +352,23 @@ def chat_with_agent(message: str, history: List) -> Generator[List, None, None]:
|
|
336 |
if isinstance(item, dict):
|
337 |
# Already a dict, check if it has required keys
|
338 |
if "role" in item and "content" in item:
|
339 |
-
|
|
|
|
|
340 |
else:
|
341 |
# Skip malformed dict items
|
342 |
print(f"Warning: Skipping malformed history item: {item}")
|
343 |
continue
|
344 |
elif hasattr(item, "role") and hasattr(item, "content"):
|
345 |
-
# ChatMessage object - convert to dict
|
346 |
-
|
|
|
347 |
elif isinstance(item, (list, tuple)) and len(item) == 2:
|
348 |
# Legacy format: [user_message, assistant_message] or (user, assistant)
|
349 |
# Convert to proper message format
|
350 |
if isinstance(item[0], str) and isinstance(item[1], str):
|
351 |
-
formatted_history.append({"role": "user", "content": item[0]})
|
352 |
-
formatted_history.append({"role": "assistant", "content": item[1]})
|
353 |
else:
|
354 |
print(f"Warning: Skipping malformed history item: {item}")
|
355 |
continue
|
@@ -391,10 +410,10 @@ def chat_with_agent(message: str, history: List) -> Generator[List, None, None]:
|
|
391 |
step_content += f"π **Step {step.step_number}:** *In Progress...*\n\n"
|
392 |
|
393 |
if hasattr(step, "thought") and step.thought:
|
394 |
-
step_content += f"π **Thought:** {step.thought}\n\n"
|
395 |
|
396 |
if hasattr(step, "action") and step.action:
|
397 |
-
step_content += f"π οΈ **Action:** {step.action}\n\n"
|
398 |
|
399 |
if hasattr(step, "observations") and step.observations:
|
400 |
obs_text = str(step.observations)[:300]
|
@@ -403,7 +422,9 @@ def chat_with_agent(message: str, history: List) -> Generator[List, None, None]:
|
|
403 |
step_content += f"ποΈ **Observation:** {obs_text}\n\n"
|
404 |
|
405 |
step_content += "β³ *Processing next step...*"
|
406 |
-
|
|
|
|
|
407 |
new_history[-1] = thinking_message
|
408 |
yield validate_message_history(new_history)
|
409 |
|
@@ -411,9 +432,10 @@ def chat_with_agent(message: str, history: List) -> Generator[List, None, None]:
|
|
411 |
# If streaming fails, fall back to regular execution
|
412 |
print(f"Streaming failed: {stream_error}, falling back to regular execution")
|
413 |
|
414 |
-
thinking_message
|
415 |
-
"
|
416 |
-
|
|
|
417 |
new_history[-1] = thinking_message
|
418 |
yield validate_message_history(new_history)
|
419 |
|
@@ -467,28 +489,35 @@ def chat_with_agent(message: str, history: List) -> Generator[List, None, None]:
|
|
467 |
tool_usage_content = "Agent executed actions successfully"
|
468 |
|
469 |
# Update thinking to show completion
|
470 |
-
thinking_message
|
471 |
-
"
|
472 |
-
|
|
|
473 |
new_history[-1] = thinking_message
|
474 |
yield validate_message_history(new_history)
|
475 |
|
476 |
# Add tool usage message if there were tools used
|
477 |
if tool_usage_content:
|
478 |
-
tool_message = {
|
|
|
|
|
|
|
479 |
new_history.append(tool_message)
|
480 |
yield validate_message_history(new_history)
|
481 |
|
482 |
# Add final response
|
483 |
final_response = str(result) if result else "I couldn't process your request."
|
484 |
-
final_message = {"role": "assistant", "content": final_response}
|
485 |
new_history.append(final_message)
|
486 |
yield validate_message_history(new_history)
|
487 |
return
|
488 |
|
489 |
# If we get here, streaming worked, so get the final result
|
490 |
# The streaming should have shown all the steps, now get final answer
|
491 |
-
thinking_message
|
|
|
|
|
|
|
492 |
new_history[-1] = thinking_message
|
493 |
yield validate_message_history(new_history)
|
494 |
|
@@ -500,7 +529,7 @@ def chat_with_agent(message: str, history: List) -> Generator[List, None, None]:
|
|
500 |
if hasattr(last_step, "observations") and last_step.observations:
|
501 |
final_response = str(last_step.observations)
|
502 |
|
503 |
-
final_message = {"role": "assistant", "content": final_response}
|
504 |
new_history.append(final_message)
|
505 |
yield validate_message_history(new_history)
|
506 |
|
@@ -553,8 +582,8 @@ chat_interface = gr.ChatInterface(
|
|
553 |
**β±οΈ Processing Time Note:** Depending on the type of query, processing can take several seconds or minutes to complete.
|
554 |
""",
|
555 |
examples=[
|
|
|
556 |
"π Search my AI bookmarks",
|
557 |
-
"π§ Show me my latest 5 emails",
|
558 |
"π€ Find emails about AI",
|
559 |
"π Search for latest AI news",
|
560 |
"π What AI resources do I have?",
|
@@ -566,7 +595,7 @@ chat_interface = gr.ChatInterface(
|
|
566 |
"π Show model releases bookmarks",
|
567 |
"π οΈ Find tools and frameworks bookmarks",
|
568 |
],
|
569 |
-
show_progress="hidden"
|
570 |
)
|
571 |
|
572 |
# Create categories and about interfaces
|
|
|
307 |
return about_tab
|
308 |
|
309 |
|
310 |
+
def sanitize_content(content):
|
311 |
+
"""Sanitize content to ensure it's a clean string without complex objects"""
|
312 |
+
if isinstance(content, str):
|
313 |
+
return content
|
314 |
+
elif isinstance(content, dict):
|
315 |
+
# If content is a dict, convert to string representation
|
316 |
+
return str(content)
|
317 |
+
elif hasattr(content, "__dict__"):
|
318 |
+
# If it's an object with attributes, convert to string
|
319 |
+
return str(content)
|
320 |
+
else:
|
321 |
+
return str(content)
|
322 |
+
|
323 |
+
|
324 |
def validate_message_history(history):
|
325 |
"""Validate and return properly formatted message history"""
|
326 |
validated = []
|
327 |
for msg in history:
|
328 |
if isinstance(msg, dict) and "role" in msg and "content" in msg:
|
329 |
+
# Ensure content is a string and properly formatted
|
330 |
+
content = sanitize_content(msg["content"])
|
331 |
+
|
332 |
+
# Create a clean message dict to avoid any nesting issues
|
333 |
+
clean_msg = {"role": str(msg["role"]), "content": content}
|
334 |
+
validated.append(clean_msg)
|
335 |
else:
|
336 |
print(f"Warning: Invalid message format detected: {msg}")
|
337 |
return validated
|
|
|
352 |
if isinstance(item, dict):
|
353 |
# Already a dict, check if it has required keys
|
354 |
if "role" in item and "content" in item:
|
355 |
+
# Ensure content is a simple string
|
356 |
+
content = sanitize_content(item["content"])
|
357 |
+
formatted_history.append({"role": str(item["role"]), "content": content})
|
358 |
else:
|
359 |
# Skip malformed dict items
|
360 |
print(f"Warning: Skipping malformed history item: {item}")
|
361 |
continue
|
362 |
elif hasattr(item, "role") and hasattr(item, "content"):
|
363 |
+
# ChatMessage object - convert to dict with string content
|
364 |
+
content = sanitize_content(item.content)
|
365 |
+
formatted_history.append({"role": str(item.role), "content": content})
|
366 |
elif isinstance(item, (list, tuple)) and len(item) == 2:
|
367 |
# Legacy format: [user_message, assistant_message] or (user, assistant)
|
368 |
# Convert to proper message format
|
369 |
if isinstance(item[0], str) and isinstance(item[1], str):
|
370 |
+
formatted_history.append({"role": "user", "content": str(item[0])})
|
371 |
+
formatted_history.append({"role": "assistant", "content": str(item[1])})
|
372 |
else:
|
373 |
print(f"Warning: Skipping malformed history item: {item}")
|
374 |
continue
|
|
|
410 |
step_content += f"π **Step {step.step_number}:** *In Progress...*\n\n"
|
411 |
|
412 |
if hasattr(step, "thought") and step.thought:
|
413 |
+
step_content += f"π **Thought:** {str(step.thought)}\n\n"
|
414 |
|
415 |
if hasattr(step, "action") and step.action:
|
416 |
+
step_content += f"π οΈ **Action:** {str(step.action)}\n\n"
|
417 |
|
418 |
if hasattr(step, "observations") and step.observations:
|
419 |
obs_text = str(step.observations)[:300]
|
|
|
422 |
step_content += f"ποΈ **Observation:** {obs_text}\n\n"
|
423 |
|
424 |
step_content += "β³ *Processing next step...*"
|
425 |
+
|
426 |
+
# Ensure the content is a clean string
|
427 |
+
thinking_message = {"role": "assistant", "content": str(step_content)}
|
428 |
new_history[-1] = thinking_message
|
429 |
yield validate_message_history(new_history)
|
430 |
|
|
|
432 |
# If streaming fails, fall back to regular execution
|
433 |
print(f"Streaming failed: {stream_error}, falling back to regular execution")
|
434 |
|
435 |
+
thinking_message = {
|
436 |
+
"role": "assistant",
|
437 |
+
"content": "β‘ **Agent Working** π\n\nπ« Processing your request using available tools...\n\nβ³ *Please wait...*",
|
438 |
+
}
|
439 |
new_history[-1] = thinking_message
|
440 |
yield validate_message_history(new_history)
|
441 |
|
|
|
489 |
tool_usage_content = "Agent executed actions successfully"
|
490 |
|
491 |
# Update thinking to show completion
|
492 |
+
thinking_message = {
|
493 |
+
"role": "assistant",
|
494 |
+
"content": "β
**Agent Complete** π\n\nβ
Request processed successfully\nβ
Response prepared",
|
495 |
+
}
|
496 |
new_history[-1] = thinking_message
|
497 |
yield validate_message_history(new_history)
|
498 |
|
499 |
# Add tool usage message if there were tools used
|
500 |
if tool_usage_content:
|
501 |
+
tool_message = {
|
502 |
+
"role": "assistant",
|
503 |
+
"content": f"π οΈ **Tools & Actions Used**\n\n{str(tool_usage_content)}",
|
504 |
+
}
|
505 |
new_history.append(tool_message)
|
506 |
yield validate_message_history(new_history)
|
507 |
|
508 |
# Add final response
|
509 |
final_response = str(result) if result else "I couldn't process your request."
|
510 |
+
final_message = {"role": "assistant", "content": str(final_response)}
|
511 |
new_history.append(final_message)
|
512 |
yield validate_message_history(new_history)
|
513 |
return
|
514 |
|
515 |
# If we get here, streaming worked, so get the final result
|
516 |
# The streaming should have shown all the steps, now get final answer
|
517 |
+
thinking_message = {
|
518 |
+
"role": "assistant",
|
519 |
+
"content": "β
**Agent Complete** π\n\nβ
All steps executed\nβ
Preparing final response",
|
520 |
+
}
|
521 |
new_history[-1] = thinking_message
|
522 |
yield validate_message_history(new_history)
|
523 |
|
|
|
529 |
if hasattr(last_step, "observations") and last_step.observations:
|
530 |
final_response = str(last_step.observations)
|
531 |
|
532 |
+
final_message = {"role": "assistant", "content": str(final_response)}
|
533 |
new_history.append(final_message)
|
534 |
yield validate_message_history(new_history)
|
535 |
|
|
|
582 |
**β±οΈ Processing Time Note:** Depending on the type of query, processing can take several seconds or minutes to complete.
|
583 |
""",
|
584 |
examples=[
|
585 |
+
"π§ Show me my latest 5 newsletters emails",
|
586 |
"π Search my AI bookmarks",
|
|
|
587 |
"π€ Find emails about AI",
|
588 |
"π Search for latest AI news",
|
589 |
"π What AI resources do I have?",
|
|
|
595 |
"π Show model releases bookmarks",
|
596 |
"π οΈ Find tools and frameworks bookmarks",
|
597 |
],
|
598 |
+
show_progress="hidden"
|
599 |
)
|
600 |
|
601 |
# Create categories and about interfaces
|