MedCodeMCP / app.py
gpaasch's picture
have to turn the mcp server on for it to work
684322f
import gradio as gr
from utils.model_configuration_utils import select_best_model, ensure_model
from services.llm import build_llm
from utils.voice_input_utils import update_live_transcription, format_response_for_user
from services.embeddings import configure_embeddings
from services.indexing import create_symptom_index
import torch
import torchaudio
import torchaudio.transforms as T
import json
import re
# ========== Model setup ==========
MODEL_NAME, REPO_ID = select_best_model()
model_path = ensure_model()
print(f"Using model: {MODEL_NAME} from {REPO_ID}", flush=True)
print(f"Model path: {model_path}", flush=True)
# ========== LLM initialization ==========
print("\n<<< before build_llm: ", flush=True)
llm = build_llm(model_path)
print(">>> after build_llm", flush=True)
# ========== Embeddings & index setup ==========
print("\n<<< before configure_embeddings: ", flush=True)
configure_embeddings()
print(">>> after configure_embeddings", flush=True)
print("Embeddings configured and ready", flush=True)
print("\n<<< before create_symptom_index: ", flush=True)
symptom_index = create_symptom_index()
print(">>> after create_symptom_index", flush=True)
print("Symptom index built successfully. Ready for queries.", flush=True)
# ========== Prompt template ==========
SYSTEM_PROMPT = (
"You are a medical assistant helping a user narrow down to the most likely ICD-10 code. "
"At each turn, either ask one focused clarifying question (e.g. 'Is your cough dry or productive?') "
"or if you have enough information, provide a final JSON with fields: {\"diagnoses\": [...], "
"\"confidences\": [...], \"follow_up\": [...]}. Output must be valid JSON with no trailing commas. Your output MUST be strictly valid JSON, starting with '{' and ending with '}', with no extra text outside the JSON."
)
# ========== Generator handler ==========
def on_submit(symptoms_text, history):
log = []
print("on_submit called", flush=True)
# Placeholder
msg = "πŸ” Received input"
log.append(msg)
print(msg, flush=True)
history = history + [{"role": "assistant", "content": "Processing your request..."}]
yield history, None, "\n".join(log)
# Validate
if not symptoms_text.strip():
msg = "❌ No symptoms provided"
log.append(msg)
print(msg, flush=True)
result = {"error": "No input provided", "diagnoses": [], "confidences": [], "follow_up": []}
yield history, result, "\n".join(log)
return
# Clean input
cleaned = symptoms_text.strip()
msg = f"πŸ”„ Cleaned text: {cleaned}"
log.append(msg)
print(msg, flush=True)
yield history, None, "\n".join(log)
# Semantic query
msg = "πŸ” Running semantic query"
log.append(msg)
print(msg, flush=True)
yield history, None, "\n".join(log)
qe = symptom_index.as_query_engine(retriever_kwargs={"similarity_top_k": 5})
hits = qe.query(cleaned)
msg = f"πŸ” Retrieved context entries"
log.append(msg)
print(msg, flush=True)
history = history + [{"role": "assistant", "content": msg}]
yield history, None, "\n".join(log)
# Build prompt with minimal context
context_list = []
for node in getattr(hits, 'source_nodes', [])[:3]:
md = getattr(node, 'metadata', {}) or {}
context_list.append(f"{md.get('code','')}: {md.get('description','')}")
context_text = "\n".join(context_list)
prompt = (
f"{SYSTEM_PROMPT}\n\n"
f"User symptoms: '{cleaned}'\n\n"
f"Relevant ICD-10 context:\n{context_text}\n\n"
"Respond with valid JSON."
)
msg = "✏️ Prompt built"
log.append(msg)
print(msg, flush=True)
yield history, None, "\n".join(log)
# Call LLM
# Use constrained decoding to enforce JSON-only output
response = llm.complete(prompt, stop=["}"]) # stop after closing brace
raw = getattr(response, 'text', str(response))
# Truncate extra content after the final JSON object
if not raw.strip().endswith('}'):
end_idx = raw.rfind('}')
if end_idx != -1:
raw = raw[:end_idx+1]
msg = "πŸ“‘ Raw LLM response received"
log.append(msg)
print(msg, flush=True)
yield history, None, "\n".join(log)
# Parse JSON
cleaned_raw = re.sub(r",\s*([}\]])", r"\1", raw)
try:
parsed = json.loads(cleaned_raw)
msg = "βœ… JSON parsed"
except Exception as e:
msg = f"❌ JSON parse error: {e}"
parsed = {"error": str(e), "raw": raw}
log.append(msg)
print(msg, flush=True)
yield history, parsed, "\n".join(log)
# Final assistant message
assistant_msg = format_response_for_user(parsed)
history = history + [{"role": "assistant", "content": assistant_msg}]
msg = "βœ… Final response appended"
log.append(msg)
print(msg, flush=True)
yield history, parsed, "\n".join(log)
# ========== Gradio UI ==========
with gr.Blocks(theme="default") as demo:
gr.Markdown("""
# πŸ₯ Medical Symptom to ICD-10 Code Assistant
## Describe symptoms by typing or speaking.
Debug log updates live below.
"""
)
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Type your symptoms",
placeholder="I'm feeling under the weather...",
lines=3
)
microphone = gr.Audio(
sources=["microphone"],
streaming=True,
type="numpy",
label="Or speak your symptoms..."
)
submit_btn = gr.Button("Submit", variant="primary")
clear_btn = gr.Button("Clear Chat", variant="secondary")
chatbot = gr.Chatbot(
label="Medical Consultation",
height=500,
type="messages"
)
json_output = gr.JSON(label="Diagnosis JSON")
debug_box = gr.Textbox(label="Debug log", lines=10)
with gr.Column(scale=1):
with gr.Accordion("API Keys (optional)", open=False):
api_key = gr.Textbox(label="OpenAI Key", type="password")
model_selector = gr.Dropdown(
choices=["OpenAI","Modal","Anthropic","MistralAI","Nebius","Hyperbolic","SambaNova"],
value="OpenAI",
label="Model Provider"
)
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
# Bindings
submit_btn.click(
fn=on_submit,
inputs=[text_input, chatbot],
outputs=[chatbot, json_output, debug_box],
queue=True
)
clear_btn.click(
lambda: (None, {}, ""),
None,
[chatbot, json_output, debug_box],
queue=False
)
microphone.stream(
fn=update_live_transcription,
inputs=[microphone],
outputs=[text_input],
queue=True
)
# --- About the Creator ---
gr.Markdown("""
---
### πŸ‘‹ About the Creator
Hi! I'm Graham Paasch, an experienced technology professional!
πŸŽ₯ **Check out my YouTube channel** for more tech content:
[Subscribe to my channel](https://www.youtube.com/channel/UCg3oUjrSYcqsL9rGk1g_lPQ)
πŸ’Ό **Looking for a skilled developer?**
I'm currently seeking new opportunities! View my experience and connect on [LinkedIn](https://www.linkedin.com/in/grahampaasch/)
⭐ If you found this tool helpful, please consider:
- Subscribing to my YouTube channel
- Connecting on LinkedIn
- Sharing this tool with others in healthcare tech
"""
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True, show_api=True, mcp_server=True)