Nihal2000 commited on
Commit
45c4909
Β·
verified Β·
1 Parent(s): 15131ea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -34
README.md CHANGED
@@ -6,15 +6,18 @@ colorTo: green
6
  sdk: gradio
7
  sdk_version: 5.32.0
8
  app_file: app.py
9
- tag :
10
- -mcp-server-track
11
- -Agents-MCP-Hackathon
 
12
  pinned: false
13
  license: mit
14
  ---
15
 
16
  A powerful Model Context Protocol (MCP) server for intelligent content management with semantic search, summarization, and Q&A capabilities powered by **OpenAI, Mistral AI, and Anthropic Claude**.
17
 
 
 
18
  ## 🎯 Features
19
 
20
  ### πŸ”§ MCP Tools Available
@@ -38,36 +41,7 @@ A powerful Model Context Protocol (MCP) server for intelligent content managemen
38
  - **πŸ‘οΈ Tesseract OCR** for image text extraction
39
  - **🎨 Gradio** for the user interface and MCP server functionality
40
 
41
- **LLM Strategy**: The agent intelligently selects the best available LLM for most generative tasks when 'auto' model selection is used, prioritizing OpenAI, then Mistral, and finally Anthropic. Users can also specify a particular model family (e.g., 'gpt-', 'mistral-', 'claude-').
42
-
43
- ## πŸ“‹ Complete File Structure
44
- intelligent-content-organizer/
45
- β”œβ”€β”€ app.py # Main Gradio app and MCP server
46
- β”œβ”€β”€ config.py # Configuration management
47
- β”œβ”€β”€ mcp_server.py # MCP server tools (registration, serving logic)
48
- β”œβ”€β”€ requirements.txt # Dependencies
49
- β”œβ”€β”€ README.md # Documentation
50
- β”œβ”€β”€ .gitignore # Git ignore rules
51
- β”œβ”€β”€ core/ # Core processing logic
52
- β”‚ β”œβ”€β”€ init.py
53
- β”‚ β”œβ”€β”€ models.py # Data models (e.g., Document, Chunk)
54
- β”‚ β”œβ”€β”€ document_parser.py # Document processing (PDF, TXT, DOCX, etc.)
55
- β”‚ β”œβ”€β”€ text_preprocessor.py # Text cleaning and processing
56
- β”‚ └── chunker.py # Text chunking strategies
57
- β”œβ”€β”€ services/ # Backend services
58
- β”‚ β”œβ”€β”€ init.py
59
- β”‚ β”œβ”€β”€ embedding_service.py # Sentence transformers integration
60
- β”‚ β”œβ”€β”€ llm_service.py # Anthropic + Mistral LLM integration
61
- β”‚ β”œβ”€β”€ ocr_service.py # Mistral OCR integration
62
- β”‚ β”œβ”€β”€ vector_store_service.py # FAISS vector storage
63
- β”‚ └── document_store_service.py # Document metadata storage (e.g., SQLite, JSON files)
64
- └── mcp_tools/ # MCP tool definitions
65
- β”œβ”€β”€ init.py
66
- β”œβ”€β”€ ingestion_tool.py # Document ingestion tool for MCP
67
- β”œβ”€β”€ search_tool.py # Semantic search tool for MCP
68
- β”œβ”€β”€ generative_tool.py # AI generation tool for MCP
69
- └── utils.py # Utility functions for MCP tools
70
-
71
 
72
  ## 🎯 Key Features Implemented
73
 
@@ -77,7 +51,7 @@ intelligent-content-organizer/
77
  4. **AI-Powered Features**: Summarization, tagging, categorization, Q&A with RAG
78
  5. **Production Ready**: Error handling, logging, caching, rate limiting
79
  6. **Gradio UI**: Beautiful web interface for testing and direct use
80
- 7. **Anthropic + Mistral**: Dual LLM support with fallbacks
81
 
82
  ## πŸŽ₯ Demo Video
83
 
 
6
  sdk: gradio
7
  sdk_version: 5.32.0
8
  app_file: app.py
9
+ tag : Agents-MCP-Hackathon
10
+ -mcp-server-track
11
+ -agent-demo-track
12
+
13
  pinned: false
14
  license: mit
15
  ---
16
 
17
  A powerful Model Context Protocol (MCP) server for intelligent content management with semantic search, summarization, and Q&A capabilities powered by **OpenAI, Mistral AI, and Anthropic Claude**.
18
 
19
+ ## [πŸ“Ή Read Article](https://huggingface.co/blog/Nihal2000/intelligent-content-organizer#empowering-your-data-building-an-intelligent-content-organizer-with-mistral-ai-and-the-model-context-protocol)
20
+
21
  ## 🎯 Features
22
 
23
  ### πŸ”§ MCP Tools Available
 
41
  - **πŸ‘οΈ Tesseract OCR** for image text extraction
42
  - **🎨 Gradio** for the user interface and MCP server functionality
43
 
44
+ ## LLM Strategy: The agent intelligently selects the best available LLM for most generative tasks when 'auto' model selection is used, prioritizing OpenAI, then Mistral, and finally Anthropic. Users can also specify a particular model family (e.g., 'gpt-', 'mistral-', 'claude-').
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
  ## 🎯 Key Features Implemented
47
 
 
51
  4. **AI-Powered Features**: Summarization, tagging, categorization, Q&A with RAG
52
  5. **Production Ready**: Error handling, logging, caching, rate limiting
53
  6. **Gradio UI**: Beautiful web interface for testing and direct use
54
+ 7. **OpenAi + Anthropic + Mistral**: LLM support with fallbacks
55
 
56
  ## πŸŽ₯ Demo Video
57