Update services/llm_service.py
Browse files- services/llm_service.py +43 -91
services/llm_service.py
CHANGED
|
@@ -3,7 +3,6 @@ import logging
|
|
| 3 |
import asyncio
|
| 4 |
from typing import List, Dict, Any, Optional
|
| 5 |
|
| 6 |
-
import anthropic
|
| 7 |
import openai
|
| 8 |
import config
|
| 9 |
|
|
@@ -13,35 +12,29 @@ class LLMService:
|
|
| 13 |
def __init__(self):
|
| 14 |
self.config = config.config
|
| 15 |
|
| 16 |
-
self.
|
| 17 |
self.mistral_client = None
|
| 18 |
-
self.openai_async_client = None
|
| 19 |
|
| 20 |
self._initialize_clients()
|
| 21 |
|
| 22 |
def _initialize_clients(self):
|
| 23 |
"""Initialize LLM clients"""
|
| 24 |
try:
|
| 25 |
-
if self.config.
|
| 26 |
-
self.
|
| 27 |
-
api_key=self.config.
|
|
|
|
| 28 |
)
|
| 29 |
-
logger.info("
|
| 30 |
|
| 31 |
if self.config.MISTRAL_API_KEY:
|
| 32 |
self.mistral_client = Mistral( # Standard sync client
|
| 33 |
api_key=self.config.MISTRAL_API_KEY
|
| 34 |
)
|
| 35 |
logger.info("Mistral client initialized")
|
| 36 |
-
|
| 37 |
-
if self.config.OPENAI_API_KEY:
|
| 38 |
-
self.openai_async_client = openai.AsyncOpenAI(
|
| 39 |
-
api_key=self.config.OPENAI_API_KEY
|
| 40 |
-
)
|
| 41 |
-
logger.info("OpenAI client initialized")
|
| 42 |
|
| 43 |
# Check if at least one client is initialized
|
| 44 |
-
if not any([self.
|
| 45 |
logger.warning("No LLM clients could be initialized based on current config. Check API keys.")
|
| 46 |
else:
|
| 47 |
logger.info("LLM clients initialized successfully (at least one).")
|
|
@@ -56,99 +49,68 @@ class LLMService:
|
|
| 56 |
selected_model_name_for_call: str = ""
|
| 57 |
|
| 58 |
if model == "auto":
|
| 59 |
-
# New Priority: 1. OpenAI, 2. Mistral
|
| 60 |
-
if self.
|
| 61 |
-
selected_model_name_for_call = self.config.
|
| 62 |
-
logger.debug(f"Auto-selected
|
| 63 |
-
return await self.
|
| 64 |
elif self.mistral_client and self.config.MISTRAL_MODEL:
|
| 65 |
selected_model_name_for_call = self.config.MISTRAL_MODEL
|
| 66 |
logger.debug(f"Auto-selected Mistral model: {selected_model_name_for_call}")
|
| 67 |
return await self._generate_with_mistral(prompt, selected_model_name_for_call, max_tokens, temperature)
|
| 68 |
-
elif self.anthropic_client and self.config.ANTHROPIC_MODEL:
|
| 69 |
-
selected_model_name_for_call = self.config.ANTHROPIC_MODEL
|
| 70 |
-
logger.debug(f"Auto-selected Anthropic model: {selected_model_name_for_call}")
|
| 71 |
-
return await self._generate_with_claude(prompt, selected_model_name_for_call, max_tokens, temperature)
|
| 72 |
else:
|
| 73 |
logger.error("No LLM clients available for 'auto' mode or default models not configured.")
|
| 74 |
raise ValueError("No LLM clients available for 'auto' mode or default models not configured.")
|
| 75 |
|
| 76 |
-
elif model.startswith("gpt-") or model.lower().startswith("
|
| 77 |
-
if not self.
|
| 78 |
-
raise ValueError("
|
| 79 |
actual_model = model.split('/')[-1] if '/' in model else model
|
| 80 |
-
return await self.
|
| 81 |
|
| 82 |
elif model.startswith("mistral"):
|
| 83 |
if not self.mistral_client:
|
| 84 |
raise ValueError("Mistral client not available. Check API key or model prefix.")
|
| 85 |
return await self._generate_with_mistral(prompt, model, max_tokens, temperature)
|
| 86 |
-
|
| 87 |
-
elif model.startswith("claude"):
|
| 88 |
-
if not self.anthropic_client:
|
| 89 |
-
raise ValueError("Anthropic client not available. Check API key or model prefix.")
|
| 90 |
-
return await self._generate_with_claude(prompt, model, max_tokens, temperature)
|
| 91 |
|
| 92 |
else:
|
| 93 |
-
raise ValueError(f"Unsupported model: {model}. Must start with 'gpt-', 'openai/', '
|
| 94 |
|
| 95 |
except Exception as e:
|
| 96 |
logger.error(f"Error generating text with model '{model}': {str(e)}")
|
| 97 |
raise
|
| 98 |
|
| 99 |
-
async def
|
| 100 |
-
"""Generate text using OpenAI
|
| 101 |
-
if not self.
|
| 102 |
-
raise RuntimeError("
|
| 103 |
try:
|
| 104 |
-
logger.debug(f"Generating with
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
)
|
| 111 |
if response.choices and response.choices[0].message:
|
| 112 |
content = response.choices[0].message.content
|
| 113 |
if content is not None:
|
| 114 |
return content.strip()
|
| 115 |
else:
|
| 116 |
-
logger.warning(f"
|
| 117 |
return ""
|
| 118 |
else:
|
| 119 |
-
logger.warning(f"
|
| 120 |
return ""
|
| 121 |
except Exception as e:
|
| 122 |
-
logger.error(f"Error with
|
| 123 |
raise
|
| 124 |
|
| 125 |
-
async def _generate_with_claude(self, prompt: str, model_name: str, max_tokens: int, temperature: float) -> str:
|
| 126 |
-
"""Generate text using Anthropic/Claude (Sync via run_in_executor)"""
|
| 127 |
-
if not self.anthropic_client:
|
| 128 |
-
raise RuntimeError("Anthropic client not initialized.")
|
| 129 |
-
try:
|
| 130 |
-
logger.debug(f"Generating with Anthropic model: {model_name}, max_tokens: {max_tokens}, temp: {temperature}, prompt: '{prompt[:50]}...'")
|
| 131 |
-
loop = asyncio.get_event_loop()
|
| 132 |
-
response = await loop.run_in_executor(
|
| 133 |
-
None,
|
| 134 |
-
lambda: self.anthropic_client.messages.create(
|
| 135 |
-
model=model_name,
|
| 136 |
-
max_tokens=max_tokens,
|
| 137 |
-
temperature=temperature,
|
| 138 |
-
messages=[
|
| 139 |
-
{"role": "user", "content": prompt}
|
| 140 |
-
]
|
| 141 |
-
)
|
| 142 |
-
)
|
| 143 |
-
if response.content and response.content[0].text:
|
| 144 |
-
return response.content[0].text.strip()
|
| 145 |
-
else:
|
| 146 |
-
logger.warning(f"Anthropic response did not contain expected content for model {model_name}.")
|
| 147 |
-
return ""
|
| 148 |
-
except Exception as e:
|
| 149 |
-
logger.error(f"Error with Anthropic (Claude) generation (model: {model_name}): {str(e)}")
|
| 150 |
-
raise
|
| 151 |
-
|
| 152 |
async def _generate_with_mistral(self, prompt: str, model_name: str, max_tokens: int, temperature: float) -> str:
|
| 153 |
"""Generate text using Mistral (Sync via run_in_executor)"""
|
| 154 |
if not self.mistral_client:
|
|
@@ -348,9 +310,8 @@ Answer:"""
|
|
| 348 |
async def check_availability(self) -> Dict[str, bool]:
|
| 349 |
"""Check which LLM services are available by making a tiny test call."""
|
| 350 |
availability = {
|
| 351 |
-
"
|
| 352 |
-
"mistral": False
|
| 353 |
-
"anthropic": False
|
| 354 |
}
|
| 355 |
test_prompt = "Hello"
|
| 356 |
test_max_tokens = 5
|
|
@@ -358,14 +319,14 @@ Answer:"""
|
|
| 358 |
|
| 359 |
logger.info("Checking LLM availability...")
|
| 360 |
|
| 361 |
-
if self.
|
| 362 |
try:
|
| 363 |
-
logger.debug(f"Testing
|
| 364 |
-
test_response = await self.
|
| 365 |
-
availability["
|
| 366 |
except Exception as e:
|
| 367 |
-
logger.warning(f"
|
| 368 |
-
logger.info(f"
|
| 369 |
|
| 370 |
if self.mistral_client and self.config.MISTRAL_MODEL:
|
| 371 |
try:
|
|
@@ -375,15 +336,6 @@ Answer:"""
|
|
| 375 |
except Exception as e:
|
| 376 |
logger.warning(f"Mistral availability check failed for model {self.config.MISTRAL_MODEL}: {e}")
|
| 377 |
logger.info(f"Mistral available: {availability['mistral']}")
|
| 378 |
-
|
| 379 |
-
if self.anthropic_client and self.config.ANTHROPIC_MODEL:
|
| 380 |
-
try:
|
| 381 |
-
logger.debug(f"Testing Anthropic availability with model {self.config.ANTHROPIC_MODEL}...")
|
| 382 |
-
test_response = await self._generate_with_claude(test_prompt, self.config.ANTHROPIC_MODEL, test_max_tokens, test_temp)
|
| 383 |
-
availability["anthropic"] = bool(test_response.strip())
|
| 384 |
-
except Exception as e:
|
| 385 |
-
logger.warning(f"Anthropic availability check failed for model {self.config.ANTHROPIC_MODEL}: {e}")
|
| 386 |
-
logger.info(f"Anthropic available: {availability['anthropic']}")
|
| 387 |
|
| 388 |
logger.info(f"Final LLM Availability: {availability}")
|
| 389 |
return availability
|
|
|
|
| 3 |
import asyncio
|
| 4 |
from typing import List, Dict, Any, Optional
|
| 5 |
|
|
|
|
| 6 |
import openai
|
| 7 |
import config
|
| 8 |
|
|
|
|
| 12 |
def __init__(self):
|
| 13 |
self.config = config.config
|
| 14 |
|
| 15 |
+
self.nebius_client = None
|
| 16 |
self.mistral_client = None
|
|
|
|
| 17 |
|
| 18 |
self._initialize_clients()
|
| 19 |
|
| 20 |
def _initialize_clients(self):
|
| 21 |
"""Initialize LLM clients"""
|
| 22 |
try:
|
| 23 |
+
if self.config.NEBIUS_API_KEY:
|
| 24 |
+
self.nebius_client = openai.OpenAI(
|
| 25 |
+
api_key=self.config.NEBIUS_API_KEY,
|
| 26 |
+
base_url=self.config.NEBIUS_BASE_URL
|
| 27 |
)
|
| 28 |
+
logger.info("NEBIUS client initialized")
|
| 29 |
|
| 30 |
if self.config.MISTRAL_API_KEY:
|
| 31 |
self.mistral_client = Mistral( # Standard sync client
|
| 32 |
api_key=self.config.MISTRAL_API_KEY
|
| 33 |
)
|
| 34 |
logger.info("Mistral client initialized")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
# Check if at least one client is initialized
|
| 37 |
+
if not any([self.nebius_client, self.mistral_client]):
|
| 38 |
logger.warning("No LLM clients could be initialized based on current config. Check API keys.")
|
| 39 |
else:
|
| 40 |
logger.info("LLM clients initialized successfully (at least one).")
|
|
|
|
| 49 |
selected_model_name_for_call: str = ""
|
| 50 |
|
| 51 |
if model == "auto":
|
| 52 |
+
# New Priority: 1. NEBIUS (OpenAI OSS), 2. Mistral
|
| 53 |
+
if self.nebius_client and self.config.NEBIUS_MODEL:
|
| 54 |
+
selected_model_name_for_call = self.config.NEBIUS_MODEL
|
| 55 |
+
logger.debug(f"Auto-selected NEBIUS model: {selected_model_name_for_call}")
|
| 56 |
+
return await self._generate_with_nebius(prompt, selected_model_name_for_call, max_tokens, temperature)
|
| 57 |
elif self.mistral_client and self.config.MISTRAL_MODEL:
|
| 58 |
selected_model_name_for_call = self.config.MISTRAL_MODEL
|
| 59 |
logger.debug(f"Auto-selected Mistral model: {selected_model_name_for_call}")
|
| 60 |
return await self._generate_with_mistral(prompt, selected_model_name_for_call, max_tokens, temperature)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
else:
|
| 62 |
logger.error("No LLM clients available for 'auto' mode or default models not configured.")
|
| 63 |
raise ValueError("No LLM clients available for 'auto' mode or default models not configured.")
|
| 64 |
|
| 65 |
+
elif model.startswith("gpt-") or model.startswith("openai/") or model.lower().startswith("nebius/"):
|
| 66 |
+
if not self.nebius_client:
|
| 67 |
+
raise ValueError("NEBIUS client not available. Check API key or model prefix.")
|
| 68 |
actual_model = model.split('/')[-1] if '/' in model else model
|
| 69 |
+
return await self._generate_with_nebius(prompt, actual_model, max_tokens, temperature)
|
| 70 |
|
| 71 |
elif model.startswith("mistral"):
|
| 72 |
if not self.mistral_client:
|
| 73 |
raise ValueError("Mistral client not available. Check API key or model prefix.")
|
| 74 |
return await self._generate_with_mistral(prompt, model, max_tokens, temperature)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
else:
|
| 77 |
+
raise ValueError(f"Unsupported model: {model}. Must start with 'gpt-', 'openai/', 'nebius/', 'mistral', or be 'auto'.")
|
| 78 |
|
| 79 |
except Exception as e:
|
| 80 |
logger.error(f"Error generating text with model '{model}': {str(e)}")
|
| 81 |
raise
|
| 82 |
|
| 83 |
+
async def _generate_with_nebius(self, prompt: str, model_name: str, max_tokens: int, temperature: float) -> str:
|
| 84 |
+
"""Generate text using NEBIUS (OpenAI OSS models via sync client)"""
|
| 85 |
+
if not self.nebius_client:
|
| 86 |
+
raise RuntimeError("NEBIUS client not initialized.")
|
| 87 |
try:
|
| 88 |
+
logger.debug(f"Generating with NEBIUS model: {model_name}, max_tokens: {max_tokens}, temp: {temperature}, prompt: '{prompt[:50]}...'")
|
| 89 |
+
loop = asyncio.get_event_loop()
|
| 90 |
+
|
| 91 |
+
response = await loop.run_in_executor(
|
| 92 |
+
None,
|
| 93 |
+
lambda: self.nebius_client.chat.completions.create(
|
| 94 |
+
model=model_name,
|
| 95 |
+
messages=[{"role": "user", "content": prompt}],
|
| 96 |
+
max_tokens=max_tokens,
|
| 97 |
+
temperature=temperature
|
| 98 |
+
)
|
| 99 |
)
|
| 100 |
if response.choices and response.choices[0].message:
|
| 101 |
content = response.choices[0].message.content
|
| 102 |
if content is not None:
|
| 103 |
return content.strip()
|
| 104 |
else:
|
| 105 |
+
logger.warning(f"NEBIUS response message content is None for model {model_name}.")
|
| 106 |
return ""
|
| 107 |
else:
|
| 108 |
+
logger.warning(f"NEBIUS response did not contain expected choices or message for model {model_name}.")
|
| 109 |
return ""
|
| 110 |
except Exception as e:
|
| 111 |
+
logger.error(f"Error with NEBIUS generation (model: {model_name}): {str(e)}")
|
| 112 |
raise
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
async def _generate_with_mistral(self, prompt: str, model_name: str, max_tokens: int, temperature: float) -> str:
|
| 115 |
"""Generate text using Mistral (Sync via run_in_executor)"""
|
| 116 |
if not self.mistral_client:
|
|
|
|
| 310 |
async def check_availability(self) -> Dict[str, bool]:
|
| 311 |
"""Check which LLM services are available by making a tiny test call."""
|
| 312 |
availability = {
|
| 313 |
+
"nebius": False,
|
| 314 |
+
"mistral": False
|
|
|
|
| 315 |
}
|
| 316 |
test_prompt = "Hello"
|
| 317 |
test_max_tokens = 5
|
|
|
|
| 319 |
|
| 320 |
logger.info("Checking LLM availability...")
|
| 321 |
|
| 322 |
+
if self.nebius_client and self.config.NEBIUS_MODEL:
|
| 323 |
try:
|
| 324 |
+
logger.debug(f"Testing NEBIUS availability with model {self.config.NEBIUS_MODEL}...")
|
| 325 |
+
test_response = await self._generate_with_nebius(test_prompt, self.config.NEBIUS_MODEL, test_max_tokens, test_temp)
|
| 326 |
+
availability["nebius"] = bool(test_response.strip())
|
| 327 |
except Exception as e:
|
| 328 |
+
logger.warning(f"NEBIUS availability check failed for model {self.config.NEBIUS_MODEL}: {e}")
|
| 329 |
+
logger.info(f"NEBIUS available: {availability['nebius']}")
|
| 330 |
|
| 331 |
if self.mistral_client and self.config.MISTRAL_MODEL:
|
| 332 |
try:
|
|
|
|
| 336 |
except Exception as e:
|
| 337 |
logger.warning(f"Mistral availability check failed for model {self.config.MISTRAL_MODEL}: {e}")
|
| 338 |
logger.info(f"Mistral available: {availability['mistral']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
|
| 340 |
logger.info(f"Final LLM Availability: {availability}")
|
| 341 |
return availability
|