Owos commited on
Commit
fcd1f82
·
1 Parent(s): 3d6f241

Upload INSTALL.md

Browse files
Files changed (1) hide show
  1. INSTALL.md +293 -0
INSTALL.md ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # neural-style-pt Installation
2
+
3
+ This guide will walk you through multiple ways to setup `neural-style-pt` on Ubuntu and Windows. If you wish to install PyTorch and neural-style-pt on a different operating system like MacOS, installation guides can be found [here](https://pytorch.org).
4
+
5
+ Note that in order to reduce their size, the pre-packaged binary releases (pip, Conda, etc...) have removed support for some older GPUs, and thus you will have to install from source in order to use these GPUs.
6
+
7
+
8
+ # Ubuntu:
9
+
10
+ ## With A Package Manager:
11
+
12
+ The pip and Conda packages ship with CUDA and cuDNN already built in, so after you have installed PyTorch with pip or Conda, you can skip to [installing neural-style-pt](https://github.com/ProGamerGov/neural-style-pt/blob/master/INSTALL.md#install-neural-style-pt).
13
+
14
+ ### pip:
15
+
16
+ The neural-style-pt PyPI page can be found here: https://pypi.org/project/neural-style/
17
+
18
+ If you wish to install neural-style-pt as a pip package, then use the following command:
19
+
20
+ ```
21
+ # in a terminal, run the command
22
+ pip install neural-style
23
+ ```
24
+
25
+ Or:
26
+
27
+
28
+ ```
29
+ # in a terminal, run the command
30
+ pip3 install neural-style
31
+ ```
32
+
33
+ Next download the models with:
34
+
35
+
36
+ ```
37
+ neural-style -download_models
38
+ ```
39
+
40
+ By default the models are downloaded to your home directory, but you can specify a download location with:
41
+
42
+ ```
43
+ neural-style -download_models <download_path>
44
+ ```
45
+
46
+ #### Github and pip:
47
+
48
+ Following the pip installation instructions
49
+ [here](http://pytorch.org), you can install PyTorch with the following commands:
50
+
51
+ ```
52
+ # in a terminal, run the commands
53
+ cd ~/
54
+ pip install torch torchvision
55
+ ```
56
+
57
+ Or:
58
+
59
+ ```
60
+ cd ~/
61
+ pip3 install torch torchvision
62
+ ```
63
+
64
+ Now continue on to [installing neural-style-pt](https://github.com/ProGamerGov/neural-style-pt/blob/master/INSTALL.md#install-neural-style-pt) to install neural-style-pt.
65
+
66
+ ### Conda:
67
+
68
+ Following the Conda installation instructions
69
+ [here](http://pytorch.org), you can install PyTorch with the following command:
70
+
71
+ ```
72
+ conda install pytorch torchvision -c pytorch
73
+ ```
74
+
75
+ Now continue on to [installing neural-style-pt](https://github.com/ProGamerGov/neural-style-pt/blob/master/INSTALL.md#install-neural-style-pt) to install neural-style-pt.
76
+
77
+ ## From Source:
78
+
79
+ ### (Optional) Step 1: Install CUDA
80
+
81
+ If you have a [CUDA-capable GPU from NVIDIA](https://developer.nvidia.com/cuda-gpus) then you can
82
+ speed up `neural-style-pt` with CUDA.
83
+
84
+ First download and unpack the local CUDA installer from NVIDIA; note that there are different
85
+ installers for each recent version of Ubuntu:
86
+
87
+ ```
88
+ # For Ubuntu 18.04
89
+ sudo dpkg -i cuda-repo-ubuntu1804-10-1-local-10.1.243-418.87.00_1.0-1_amd64.deb
90
+ sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub
91
+ ```
92
+
93
+ ```
94
+ # For Ubuntu 16.04
95
+ sudo dpkg -i cuda-repo-ubuntu1604-10-1-local-10.1.243-418.87.00_1.0-1_amd64.deb
96
+ sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub
97
+ ```
98
+
99
+ Instructions for downloading and installing the latest CUDA version on all supported operating systems, can be found [here](https://developer.nvidia.com/cuda-downloads).
100
+
101
+ Now update the repository cache and install CUDA. Note that this will also install a graphics driver from NVIDIA.
102
+
103
+ ```
104
+ sudo apt-get update
105
+ sudo apt-get install cuda
106
+ ```
107
+
108
+ At this point you may need to reboot your machine to load the new graphics driver.
109
+ After rebooting, you should be able to see the status of your graphics card(s) by running
110
+ the command `nvidia-smi`; it should give output that looks something like this:
111
+
112
+ ```
113
+ Wed Apr 11 21:54:49 2018
114
+ +-----------------------------------------------------------------------------+
115
+ | NVIDIA-SMI 384.90 Driver Version: 384.90 |
116
+ |-------------------------------+----------------------+----------------------+
117
+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
118
+ | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
119
+ |===============================+======================+======================|
120
+ | 0 Tesla K80 Off | 00000000:00:1E.0 Off | 0 |
121
+ | N/A 62C P0 68W / 149W | 0MiB / 11439MiB | 94% Default |
122
+ +-------------------------------+----------------------+----------------------+
123
+
124
+ +-----------------------------------------------------------------------------+
125
+ | Processes: GPU Memory |
126
+ | GPU PID Type Process name Usage |
127
+ |=============================================================================|
128
+ | No running processes found |
129
+ +-----------------------------------------------------------------------------+
130
+ ```
131
+
132
+ ### (Optional) Step 2: Install cuDNN
133
+
134
+ cuDNN is a library from NVIDIA that efficiently implements many of the operations (like convolutions and pooling)
135
+ that are commonly used in deep learning.
136
+
137
+ After registering as a developer with NVIDIA, you can [download cuDNN here](https://developer.nvidia.com/cudnn). Make sure that you use the approprite version of cuDNN for your version of CUDA.
138
+
139
+ After dowloading, you can unpack and install cuDNN like this:
140
+
141
+ ```
142
+ tar -zxvf cudnn-10.1-linux-x64-v7.5.0.56.tgz
143
+ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
144
+ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
145
+ ```
146
+
147
+ Note that the cuDNN backend can only be used for GPU mode.
148
+
149
+ ### (Optional) Steps 1-3: Install PyTorch with support for AMD GPUs using Radeon Open Compute Stack (ROCm)
150
+
151
+
152
+ It is recommended that if you wish to use PyTorch with an AMD GPU, you install it via the official ROCm dockerfile:
153
+ https://rocm.github.io/pytorch.html
154
+
155
+ - Supported AMD GPUs for the dockerfile are: Vega10 / gfx900 generation discrete graphics cards (Vega56, Vega64, or MI25).
156
+
157
+ PyTorch does not officially provide support for compilation on the host with AMD GPUs, but [a user guide posted here](https://github.com/ROCmSoftwarePlatform/pytorch/issues/337#issuecomment-467220107) apparently works well.
158
+
159
+ ROCm utilizes a CUDA porting tool called HIP, which automatically converts CUDA code into HIP code. HIP code can run on both AMD and Nvidia GPUs.
160
+
161
+
162
+ ### Step 3: Install PyTorch
163
+
164
+ To install PyTorch [from source](https://github.com/pytorch/pytorch#from-source) on Ubuntu (Instructions may be different if you are using a different OS):
165
+
166
+ ```
167
+ cd ~/
168
+ git clone --recursive https://github.com/pytorch/pytorch
169
+ cd pytorch
170
+ python setup.py install
171
+
172
+ cd ~/
173
+ git clone --recursive https://github.com/pytorch/vision
174
+ cd vision
175
+ python setup.py install
176
+ ```
177
+
178
+ To check that your torch installation is working, run the command `python` or `python3` to enter the Python interpreter. Then type `import torch` and hit enter.
179
+
180
+ You can then type `print(torch.version.cuda)` and `print(torch.backends.cudnn.version())` to confirm that you are using the desired versions of CUDA and cuDNN.
181
+
182
+ To quit just type `exit()` or use Ctrl-D.
183
+
184
+ Now continue on to [installing neural-style-pt](https://github.com/ProGamerGov/neural-style-pt/blob/master/INSTALL.md#install-neural-style-pt) to install neural-style-pt.
185
+
186
+
187
+ # Windows Installation
188
+
189
+ If you wish to install PyTorch on Windows From Source or via Conda, you can find instructions on the PyTorch website: https://pytorch.org/
190
+
191
+
192
+ ### Github and pip
193
+
194
+ First, you will need to download Python 3 and install it: https://www.python.org/downloads/windows/. I recommend using the executable installer for the latest version of Python 3.
195
+
196
+ Then using https://pytorch.org/, get the correct pip command, paste it into the Command Prompt (CMD) and hit enter:
197
+
198
+
199
+ ```
200
+ pip3 install torch===1.3.0 torchvision===0.4.1 -f https://download.pytorch.org/whl/torch_stable.html
201
+ ```
202
+
203
+
204
+ After installing PyTorch, download the neural-style-pt Github respository and extract/unzip it to the desired location.
205
+
206
+ Then copy the file path to your neural-style-pt folder, and paste it into the Command Prompt, with `cd` in front of it and then hit enter.
207
+
208
+ In the example below, the neural-style-pt folder was placed on the desktop:
209
+
210
+ ```
211
+ cd C:\Users\<User_Name>\Desktop\neural-style-pt-master
212
+ ```
213
+
214
+ You can now continue on to [installing neural-style-pt](https://github.com/ProGamerGov/neural-style-pt/blob/master/INSTALL.md#install-neural-style-pt), skipping the `git clone` step.
215
+
216
+ # Install neural-style-pt
217
+
218
+ First we clone `neural-style-pt` from GitHub:
219
+
220
+ ```
221
+ cd ~/
222
+ git clone https://github.com/ProGamerGov/neural-style-pt.git
223
+ cd neural-style-pt
224
+ ```
225
+
226
+ Next we need to download the pretrained neural network models:
227
+
228
+ ```
229
+ python models/download_models.py
230
+ ```
231
+
232
+ You should now be able to run `neural-style-pt` in CPU mode like this:
233
+
234
+ ```
235
+ python neural_style.py -gpu c -print_iter 1
236
+ ```
237
+
238
+ If you installed PyTorch with support for CUDA, then should now be able to run `neural-style-pt` in GPU mode like this:
239
+
240
+ ```
241
+ python neural_style.py -gpu 0 -print_iter 1
242
+ ```
243
+
244
+ If you installed PyTorch with support for cuDNN, then you should now be able to run `neural-style-pt` with the `cudnn` backend like this:
245
+
246
+ ```
247
+ python neural_style.py -gpu 0 -backend cudnn -print_iter 1
248
+ ```
249
+
250
+ If everything is working properly you should see output like this:
251
+
252
+ ```
253
+ Iteration 1 / 1000
254
+ Content 1 loss: 1616196.125
255
+ Style 1 loss: 29890.9980469
256
+ Style 2 loss: 658038.625
257
+ Style 3 loss: 145283.671875
258
+ Style 4 loss: 11347409.0
259
+ Style 5 loss: 563.368896484
260
+ Total loss: 13797382.0
261
+ Iteration 2 / 1000
262
+ Content 1 loss: 1616195.625
263
+ Style 1 loss: 29890.9980469
264
+ Style 2 loss: 658038.625
265
+ Style 3 loss: 145283.671875
266
+ Style 4 loss: 11347409.0
267
+ Style 5 loss: 563.368896484
268
+ Total loss: 13797382.0
269
+ Iteration 3 / 1000
270
+ Content 1 loss: 1579918.25
271
+ Style 1 loss: 29881.3164062
272
+ Style 2 loss: 654351.75
273
+ Style 3 loss: 144214.640625
274
+ Style 4 loss: 11301945.0
275
+ Style 5 loss: 562.733032227
276
+ Total loss: 13711628.0
277
+ Iteration 4 / 1000
278
+ Content 1 loss: 1460443.0
279
+ Style 1 loss: 29849.7226562
280
+ Style 2 loss: 643799.1875
281
+ Style 3 loss: 140405.015625
282
+ Style 4 loss: 10940431.0
283
+ Style 5 loss: 553.507446289
284
+ Total loss: 13217080.0
285
+ Iteration 5 / 1000
286
+ Content 1 loss: 1298983.625
287
+ Style 1 loss: 29734.8964844
288
+ Style 2 loss: 604133.8125
289
+ Style 3 loss: 125455.945312
290
+ Style 4 loss: 8850759.0
291
+ Style 5 loss: 526.118591309
292
+ Total loss: 10912633.0
293
+ ```