Spaces:
Runtime error
Runtime error
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain_community.embeddings import HuggingFaceInstructEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.llms import HuggingFaceHub, ctransformers | |
def get_pdf_text(pdf_docs): | |
text = "" | |
try: | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
except Exception as e: | |
st.error(f"Error reading PDFs: {e}") | |
return text | |
def get_text_chunks(text): | |
try: | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=800, | |
chunk_overlap=0, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
except Exception as e: | |
st.error(f"Error splitting text into chunks: {e}") | |
chunks = [] | |
return chunks | |
def get_vectorstore(text_chunks): | |
try: | |
embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
except Exception as e: | |
st.error(f"Error creating vector store: {e}") | |
vectorstore = None | |
return vectorstore | |
def get_Hub_llm(): | |
try: | |
llm = HuggingFaceHub( | |
repo_id="HuggingFaceH4/zephyr-7b-beta", | |
model_kwargs={ | |
"temperature": 0.1, | |
"max_length": 2048, | |
"top_k": 50, | |
"num_return_sequences": 3, | |
"task": "text-generation", | |
"top_p": 0.95 | |
} | |
) | |
except Exception as e: | |
st.error(f"Error loading Hub LLM: {e}") | |
llm = None | |
return llm | |
def get_local_llm(): | |
try: | |
llm = ctransformers.CTransformers( | |
model="C:/llama-2-7b-chat.ggmlv3.q4_0.bin", | |
model_type="llama", | |
max_new_tokens=1024, | |
max_length=4096, | |
temperature=0.1 | |
) | |
except Exception as e: | |
st.error(f"Error loading local LLM: {e}") | |
llm = None | |
return llm | |
def get_conversation_chain(vectorstore, llm): | |
try: | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', | |
return_messages=True, | |
input_key="question", | |
output_key="answer") | |
if vectorstore: | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
chain_type="stuff", | |
verbose=True, | |
retriever=vectorstore.as_retriever(search_kwargs={"k": 3, "search_type": "similarity"}), | |
memory=memory, | |
output_key='answer', | |
return_source_documents=False | |
) | |
else: | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
chain_type="stuff", | |
verbose=True, | |
memory=memory, | |
output_key='answer', | |
return_source_documents=False | |
) | |
except Exception as e: | |
st.error(f"Error creating conversation chain: {e}") | |
conversation_chain = None | |
return conversation_chain | |
def handle_userinput(user_question): | |
if st.session_state.conversation is None: | |
st.error("Conversation chain is not initialized.") | |
return | |
try: | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
with st.chat_message("User"): | |
st.write(message.content) | |
else: | |
with st.chat_message("assistant"): | |
st.write(message.content) | |
except Exception as e: | |
st.error(f"Error handling user input: {e}") | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="Chat with multiple PDFs", | |
page_icon=":books:") | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Chat with multiple PDFs ") | |
user_question = st.chat_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader( | |
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
try: | |
# get pdf text | |
raw_text = get_pdf_text(pdf_docs) | |
# get the text chunks | |
text_chunks = get_text_chunks(raw_text) | |
if not text_chunks: | |
st.error("No text found in the PDFs or text splitting failed.") | |
return | |
# create vector store | |
vectorstore = get_vectorstore(text_chunks) | |
if not vectorstore: | |
st.error("Failed to create vector store.") | |
return | |
# create llm | |
llm = get_Hub_llm() | |
if not llm: | |
st.error("Failed to load LLM.") | |
return | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain(vectorstore, llm) | |
if not st.session_state.conversation: | |
st.error("Failed to create conversation chain.") | |
except Exception as e: | |
st.error(f"An error occurred during processing: {e}") | |
if __name__ == '__main__': | |
main() | |