Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image | |
import torch | |
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer | |
# Load model and processor | |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
# Set device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Captioning function | |
def generate_caption(image): | |
# Choose image from upload or webcam | |
if image is None: | |
return "No image provided." | |
# Preprocess | |
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device) | |
# Generate | |
output_ids = model.generate(pixel_values, max_length=16, num_beams=4) | |
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip() | |
return caption | |
# Build Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# Image Captioning with Gradio") | |
with gr.Row(): | |
upload_input = gr.Image(sources=["upload", "webcam", "clipboard"], type="pil", label="Upload Image") | |
output_text = gr.Textbox(label="Caption", interactive=False) | |
generate_btn = gr.Button("Generate Caption") | |
generate_btn.click( | |
fn=generate_caption, | |
inputs=upload_input, | |
outputs=output_text | |
) | |
demo.launch() | |