Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForTokenClassification | |
| from transformers import pipeline | |
| import os | |
| # Define the path where model and tokenizer files are located | |
| model_directory = "AdilHayat173/token_classification" | |
| # Load the model and tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(model_directory) | |
| model = AutoModelForTokenClassification.from_pretrained(model_directory) | |
| nlp = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") | |
| st.title("Token Classification with Hugging Face") | |
| # Text input from user | |
| user_input = st.text_area("Enter text for token classification:", "") | |
| if st.button("Classify Text"): | |
| if user_input: | |
| # Token classification | |
| results = nlp(user_input) | |
| # Display results | |
| st.write("### Token Classification Results") | |
| for entity in results: | |
| st.write(f"**Token:** {entity['word']}") | |
| st.write(f"**Label:** {entity['entity_group']}") | |
| st.write(f"**Score:** {entity['score']:.4f}") | |
| st.write("---") | |
| else: | |
| st.write("Please enter some text for classification.") | |