import streamlit as st from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline import os # Define the path where model and tokenizer files are located model_directory = "AdilHayat173/token_classification" # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained(model_directory) model = AutoModelForTokenClassification.from_pretrained(model_directory) nlp = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") st.title("Token Classification with Hugging Face") # Text input from user user_input = st.text_area("Enter text for token classification:", "") if st.button("Classify Text"): if user_input: # Token classification results = nlp(user_input) # Display results st.write("### Token Classification Results") for entity in results: st.write(f"**Token:** {entity['word']}") st.write(f"**Label:** {entity['entity_group']}") st.write(f"**Score:** {entity['score']:.4f}") st.write("---") else: st.write("Please enter some text for classification.")