|
import numpy as np |
|
import hdbscan |
|
from skimage import feature, filters |
|
import cv2 |
|
from typing import Dict, Any |
|
|
|
class MOPrintOptimizer: |
|
"""Multi-objective optimizer for print parameters""" |
|
|
|
def __init__(self): |
|
|
|
self.weights = { |
|
'quality': 0.4, |
|
'speed': 0.3, |
|
'material': 0.3 |
|
} |
|
|
|
|
|
self.quality_thresholds = { |
|
'missing_rate': 0.1, |
|
'excess_rate': 0.1, |
|
'stringing_rate': 0.05, |
|
'uniformity': 0.8 |
|
} |
|
|
|
|
|
self.material_params = { |
|
'optimal_flow_rate': 100, |
|
'flow_tolerance': 10, |
|
'optimal_layer_height': 0.2 |
|
} |
|
|
|
def evaluate_quality(self, metrics: Dict[str, float]) -> float: |
|
"""Evaluate print quality score |
|
|
|
Args: |
|
metrics: Dictionary containing quality metrics |
|
- missing_rate: Percentage of missing material |
|
- excess_rate: Percentage of excess material |
|
- stringing_rate: Percentage of stringing |
|
- uniformity_score: Score for print uniformity |
|
|
|
Returns: |
|
float: Quality score (0-1) |
|
""" |
|
|
|
missing_score = 1.0 - min(1.0, metrics['missing_rate'] / self.quality_thresholds['missing_rate']) |
|
excess_score = 1.0 - min(1.0, metrics['excess_rate'] / self.quality_thresholds['excess_rate']) |
|
stringing_score = 1.0 - min(1.0, metrics['stringing_rate'] / self.quality_thresholds['stringing_rate']) |
|
uniformity_score = metrics['uniformity_score'] |
|
|
|
|
|
quality_score = np.mean([ |
|
missing_score, |
|
excess_score, |
|
stringing_score, |
|
uniformity_score |
|
]) |
|
|
|
return float(quality_score) |
|
|
|
def evaluate_material_efficiency(self, params: Dict[str, float]) -> float: |
|
"""Evaluate material efficiency |
|
|
|
Args: |
|
params: Current print parameters |
|
|
|
Returns: |
|
float: Material efficiency score (0-1) |
|
""" |
|
|
|
flow_deviation = abs(params['flow_rate'] - self.material_params['optimal_flow_rate']) |
|
flow_score = 1.0 - min(1.0, flow_deviation / self.material_params['flow_tolerance']) |
|
|
|
|
|
layer_score = params['layer_height'] / self.material_params['optimal_layer_height'] |
|
layer_score = min(1.0, layer_score) |
|
|
|
|
|
retraction_score = 1.0 - (params['retraction_distance'] / 10.0) |
|
|
|
|
|
material_score = np.mean([ |
|
flow_score * 0.4, |
|
layer_score * 0.4, |
|
retraction_score * 0.2 |
|
]) |
|
|
|
return float(material_score) |
|
|
|
def evaluate_objectives(self, image: np.ndarray, params: Dict[str, float]) -> Dict[str, Any]: |
|
"""Evaluate all objectives and combine them |
|
|
|
Args: |
|
image: Print image for quality analysis |
|
params: Current print parameters |
|
|
|
Returns: |
|
dict: Evaluation results including individual scores and total |
|
""" |
|
|
|
quality_metrics = { |
|
'missing_rate': 0.05, |
|
'excess_rate': 0.03, |
|
'stringing_rate': 0.02, |
|
'uniformity_score': 0.95 |
|
} |
|
|
|
|
|
quality_score = self.evaluate_quality(quality_metrics) |
|
speed_score = params['print_speed'] / 150.0 |
|
material_score = self.evaluate_material_efficiency(params) |
|
|
|
|
|
total_score = ( |
|
quality_score * self.weights['quality'] + |
|
speed_score * self.weights['speed'] + |
|
material_score * self.weights['material'] |
|
) |
|
|
|
return { |
|
'objectives': { |
|
'quality': float(quality_score), |
|
'speed': float(speed_score), |
|
'material': float(material_score), |
|
'total': float(total_score) |
|
}, |
|
'metrics': quality_metrics |
|
} |
|
|
|
def evaluate_print_quality(self, image, expected_pattern=None): |
|
"""Evaluate print quality using hybrid approach |
|
|
|
Args: |
|
image: Current print image |
|
expected_pattern: Expected print pattern (optional) |
|
|
|
Returns: |
|
dict: Quality metrics |
|
""" |
|
|
|
edge_metrics = self._analyze_edges(image) |
|
surface_metrics = self._analyze_surface(image) |
|
|
|
|
|
defect_metrics = self._cluster_defects(image) |
|
|
|
|
|
pattern_metrics = self._analyze_pattern(image, expected_pattern) if expected_pattern else {} |
|
|
|
return { |
|
'edge_quality': edge_metrics, |
|
'surface_quality': surface_metrics, |
|
'defect_analysis': defect_metrics, |
|
'pattern_accuracy': pattern_metrics |
|
} |
|
|
|
def _analyze_edges(self, image): |
|
"""Analyze edge quality using traditional methods""" |
|
|
|
edges_fine = feature.canny(image, sigma=1) |
|
edges_medium = feature.canny(image, sigma=2) |
|
edges_coarse = feature.canny(image, sigma=3) |
|
|
|
return { |
|
'fine_edge_score': np.mean(edges_fine), |
|
'medium_edge_score': np.mean(edges_medium), |
|
'coarse_edge_score': np.mean(edges_coarse), |
|
'edge_consistency': self._calculate_edge_consistency( |
|
[edges_fine, edges_medium, edges_coarse] |
|
) |
|
} |
|
|
|
def _analyze_surface(self, image): |
|
"""Analyze surface quality using texture analysis""" |
|
|
|
lbp = feature.local_binary_pattern(image, P=8, R=1, method='uniform') |
|
|
|
|
|
glcm = feature.graycomatrix(image, [1], [0, np.pi/4, np.pi/2, 3*np.pi/4]) |
|
contrast = feature.graycoprops(glcm, 'contrast') |
|
homogeneity = feature.graycoprops(glcm, 'homogeneity') |
|
|
|
return { |
|
'texture_uniformity': np.std(lbp), |
|
'surface_contrast': np.mean(contrast), |
|
'surface_homogeneity': np.mean(homogeneity) |
|
} |
|
|
|
def _cluster_defects(self, image): |
|
"""Use HDBSCAN to cluster potential defects""" |
|
|
|
defect_points = self._extract_defect_points(image) |
|
|
|
if len(defect_points) > 0: |
|
|
|
clusterer = hdbscan.HDBSCAN( |
|
min_cluster_size=3, |
|
min_samples=2, |
|
metric='euclidean', |
|
cluster_selection_epsilon=0.5 |
|
) |
|
cluster_labels = clusterer.fit_predict(defect_points) |
|
|
|
|
|
return self._analyze_defect_clusters(defect_points, cluster_labels) |
|
|
|
return {'defect_count': 0, 'cluster_sizes': [], 'defect_density': 0} |
|
|
|
def _calculate_edge_consistency(self, edges): |
|
"""Calculate edge consistency""" |
|
return np.mean([np.mean(edge) for edge in edges]) |
|
|
|
def _analyze_pattern(self, image, expected_pattern): |
|
"""Analyze pattern accuracy""" |
|
|
|
return 0.8 |
|
|
|
def _extract_defect_points(self, image): |
|
"""Extract potential defect points""" |
|
|
|
return np.array([[0, 0], [1, 1], [2, 2]]) |
|
|
|
def _analyze_defect_clusters(self, defect_points, cluster_labels): |
|
"""Analyze defect clusters""" |
|
|
|
return {'defect_count': len(np.unique(cluster_labels)), 'cluster_sizes': [], 'defect_density': 0} |
|
|
|
def _apply_parameter_adjustments(self, current_params, adjustments): |
|
"""Apply parameter adjustments""" |
|
|
|
return current_params |
|
|