|
"""Utility for loading the models from HF.""" |
|
from pathlib import Path |
|
import typing as tp |
|
|
|
from omegaconf import OmegaConf |
|
from huggingface_hub import hf_hub_download |
|
import torch |
|
|
|
from audiocraft.models import builders, MusicGen |
|
|
|
MODEL_CHECKPOINTS_MAP = { |
|
"small": "facebook/musicgen-small", |
|
"medium": "facebook/musicgen-medium", |
|
"large": "facebook/musicgen-large", |
|
"melody": "facebook/musicgen-melody", |
|
} |
|
|
|
|
|
def _get_state_dict(file_or_url: tp.Union[Path, str], |
|
filename="state_dict.bin", device='cpu'): |
|
|
|
print("loading", file_or_url, filename) |
|
file_or_url = str(file_or_url) |
|
assert isinstance(file_or_url, str) |
|
return torch.load( |
|
hf_hub_download(repo_id=file_or_url, filename=filename), map_location=device) |
|
|
|
|
|
def load_compression_model(file_or_url: tp.Union[Path, str], device='cpu'): |
|
pkg = _get_state_dict(file_or_url, filename="compression_state_dict.bin") |
|
cfg = OmegaConf.create(pkg['xp.cfg']) |
|
cfg.device = str(device) |
|
model = builders.get_compression_model(cfg) |
|
model.load_state_dict(pkg['best_state']) |
|
model.eval() |
|
model.cfg = cfg |
|
return model |
|
|
|
|
|
def load_lm_model(file_or_url: tp.Union[Path, str], device='cpu'): |
|
pkg = _get_state_dict(file_or_url) |
|
cfg = OmegaConf.create(pkg['xp.cfg']) |
|
cfg.device = str(device) |
|
if cfg.device == 'cpu': |
|
cfg.transformer_lm.memory_efficient = False |
|
cfg.transformer_lm.custom = True |
|
cfg.dtype = 'float32' |
|
else: |
|
cfg.dtype = 'float16' |
|
model = builders.get_lm_model(cfg) |
|
model.load_state_dict(pkg['best_state']) |
|
model.eval() |
|
model.cfg = cfg |
|
return model |
|
|
|
|
|
def get_pretrained(name: str = 'small', device='cuda'): |
|
model_id = MODEL_CHECKPOINTS_MAP[name] |
|
compression_model = load_compression_model(model_id, device=device) |
|
lm = load_lm_model(model_id, device=device) |
|
return MusicGen(name, compression_model, lm) |
|
|