|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
from itertools import product |
|
import json |
|
import math |
|
import os |
|
import random |
|
import typing as tp |
|
|
|
import pytest |
|
import torch |
|
from torch.utils.data import DataLoader |
|
|
|
from audiocraft.data.audio_dataset import ( |
|
AudioDataset, |
|
AudioMeta, |
|
_get_audio_meta, |
|
load_audio_meta, |
|
save_audio_meta |
|
) |
|
from audiocraft.data.zip import PathInZip |
|
|
|
from ..common_utils import TempDirMixin, get_white_noise, save_wav |
|
|
|
|
|
class TestAudioMeta(TempDirMixin): |
|
|
|
def test_get_audio_meta(self): |
|
sample_rates = [8000, 16_000] |
|
channels = [1, 2] |
|
duration = 1. |
|
for sample_rate, ch in product(sample_rates, channels): |
|
n_frames = int(duration * sample_rate) |
|
wav = get_white_noise(ch, n_frames) |
|
path = self.get_temp_path('sample.wav') |
|
save_wav(path, wav, sample_rate) |
|
m = _get_audio_meta(path, minimal=True) |
|
assert m.path == path, 'path does not match' |
|
assert m.sample_rate == sample_rate, 'sample rate does not match' |
|
assert m.duration == duration, 'duration does not match' |
|
assert m.amplitude is None |
|
assert m.info_path is None |
|
|
|
def test_save_audio_meta(self): |
|
audio_meta = [ |
|
AudioMeta("mypath1", 1., 16_000, None, None, PathInZip('/foo/bar.zip:/relative/file1.json')), |
|
AudioMeta("mypath2", 2., 16_000, None, None, PathInZip('/foo/bar.zip:/relative/file2.json')) |
|
] |
|
empty_audio_meta = [] |
|
for idx, meta in enumerate([audio_meta, empty_audio_meta]): |
|
path = self.get_temp_path(f'data_{idx}_save.jsonl') |
|
save_audio_meta(path, meta) |
|
with open(path, 'r') as f: |
|
lines = f.readlines() |
|
read_meta = [AudioMeta.from_dict(json.loads(line)) for line in lines] |
|
assert len(read_meta) == len(meta) |
|
for m, read_m in zip(meta, read_meta): |
|
assert m == read_m |
|
|
|
def test_load_audio_meta(self): |
|
try: |
|
import dora |
|
except ImportError: |
|
dora = None |
|
|
|
audio_meta = [ |
|
AudioMeta("mypath1", 1., 16_000, None, None, PathInZip('/foo/bar.zip:/relative/file1.json')), |
|
AudioMeta("mypath2", 2., 16_000, None, None, PathInZip('/foo/bar.zip:/relative/file2.json')) |
|
] |
|
empty_meta = [] |
|
for idx, meta in enumerate([audio_meta, empty_meta]): |
|
path = self.get_temp_path(f'data_{idx}_load.jsonl') |
|
with open(path, 'w') as f: |
|
for m in meta: |
|
json_str = json.dumps(m.to_dict()) + '\n' |
|
f.write(json_str) |
|
read_meta = load_audio_meta(path) |
|
assert len(read_meta) == len(meta) |
|
for m, read_m in zip(meta, read_meta): |
|
if dora: |
|
m.path = dora.git_save.to_absolute_path(m.path) |
|
assert m == read_m, f'original={m}, read={read_m}' |
|
|
|
|
|
class TestAudioDataset(TempDirMixin): |
|
|
|
def _create_audio_files(self, |
|
root_name: str, |
|
num_examples: int, |
|
durations: tp.Union[float, tp.Tuple[float, float]] = (0.1, 1.), |
|
sample_rate: int = 16_000, |
|
channels: int = 1): |
|
root_dir = self.get_temp_dir(root_name) |
|
for i in range(num_examples): |
|
if isinstance(durations, float): |
|
duration = durations |
|
elif isinstance(durations, tuple) and len(durations) == 1: |
|
duration = durations[0] |
|
elif isinstance(durations, tuple) and len(durations) == 2: |
|
duration = random.uniform(durations[0], durations[1]) |
|
else: |
|
assert False |
|
n_frames = int(duration * sample_rate) |
|
wav = get_white_noise(channels, n_frames) |
|
path = os.path.join(root_dir, f'example_{i}.wav') |
|
save_wav(path, wav, sample_rate) |
|
return root_dir |
|
|
|
def _create_audio_dataset(self, |
|
root_name: str, |
|
total_num_examples: int, |
|
durations: tp.Union[float, tp.Tuple[float, float]] = (0.1, 1.), |
|
sample_rate: int = 16_000, |
|
channels: int = 1, |
|
segment_duration: tp.Optional[float] = None, |
|
num_examples: int = 10, |
|
shuffle: bool = True, |
|
return_info: bool = False): |
|
root_dir = self._create_audio_files(root_name, total_num_examples, durations, sample_rate, channels) |
|
dataset = AudioDataset.from_path(root_dir, |
|
minimal_meta=True, |
|
segment_duration=segment_duration, |
|
num_samples=num_examples, |
|
sample_rate=sample_rate, |
|
channels=channels, |
|
shuffle=shuffle, |
|
return_info=return_info) |
|
return dataset |
|
|
|
def test_dataset_full(self): |
|
total_examples = 10 |
|
min_duration, max_duration = 1., 4. |
|
sample_rate = 16_000 |
|
channels = 1 |
|
dataset = self._create_audio_dataset( |
|
'dset', total_examples, durations=(min_duration, max_duration), |
|
sample_rate=sample_rate, channels=channels, segment_duration=None) |
|
assert len(dataset) == total_examples |
|
assert dataset.sample_rate == sample_rate |
|
assert dataset.channels == channels |
|
for idx in range(len(dataset)): |
|
sample = dataset[idx] |
|
assert sample.shape[0] == channels |
|
assert sample.shape[1] <= int(max_duration * sample_rate) |
|
assert sample.shape[1] >= int(min_duration * sample_rate) |
|
|
|
def test_dataset_segment(self): |
|
total_examples = 10 |
|
num_samples = 20 |
|
min_duration, max_duration = 1., 4. |
|
segment_duration = 1. |
|
sample_rate = 16_000 |
|
channels = 1 |
|
dataset = self._create_audio_dataset( |
|
'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate, |
|
channels=channels, segment_duration=segment_duration, num_examples=num_samples) |
|
assert len(dataset) == num_samples |
|
assert dataset.sample_rate == sample_rate |
|
assert dataset.channels == channels |
|
for idx in range(len(dataset)): |
|
sample = dataset[idx] |
|
assert sample.shape[0] == channels |
|
assert sample.shape[1] == int(segment_duration * sample_rate) |
|
|
|
def test_dataset_equal_audio_and_segment_durations(self): |
|
total_examples = 1 |
|
num_samples = 2 |
|
audio_duration = 1. |
|
segment_duration = 1. |
|
sample_rate = 16_000 |
|
channels = 1 |
|
dataset = self._create_audio_dataset( |
|
'dset', total_examples, durations=audio_duration, sample_rate=sample_rate, |
|
channels=channels, segment_duration=segment_duration, num_examples=num_samples) |
|
assert len(dataset) == num_samples |
|
assert dataset.sample_rate == sample_rate |
|
assert dataset.channels == channels |
|
for idx in range(len(dataset)): |
|
sample = dataset[idx] |
|
assert sample.shape[0] == channels |
|
assert sample.shape[1] == int(segment_duration * sample_rate) |
|
|
|
sample_1 = dataset[0] |
|
sample_2 = dataset[1] |
|
assert not torch.allclose(sample_1, sample_2) |
|
|
|
def test_dataset_samples(self): |
|
total_examples = 1 |
|
num_samples = 2 |
|
audio_duration = 1. |
|
segment_duration = 1. |
|
sample_rate = 16_000 |
|
channels = 1 |
|
|
|
create_dataset = partial( |
|
self._create_audio_dataset, |
|
'dset', total_examples, durations=audio_duration, sample_rate=sample_rate, |
|
channels=channels, segment_duration=segment_duration, num_examples=num_samples, |
|
) |
|
|
|
dataset = create_dataset(shuffle=True) |
|
|
|
sample_1 = dataset[0] |
|
sample_2 = dataset[0] |
|
assert not torch.allclose(sample_1, sample_2) |
|
|
|
dataset_noshuffle = create_dataset(shuffle=False) |
|
|
|
sample_1 = dataset_noshuffle[0] |
|
sample_2 = dataset_noshuffle[0] |
|
assert torch.allclose(sample_1, sample_2) |
|
|
|
def test_dataset_return_info(self): |
|
total_examples = 10 |
|
num_samples = 20 |
|
min_duration, max_duration = 1., 4. |
|
segment_duration = 1. |
|
sample_rate = 16_000 |
|
channels = 1 |
|
dataset = self._create_audio_dataset( |
|
'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate, |
|
channels=channels, segment_duration=segment_duration, num_examples=num_samples, return_info=True) |
|
assert len(dataset) == num_samples |
|
assert dataset.sample_rate == sample_rate |
|
assert dataset.channels == channels |
|
for idx in range(len(dataset)): |
|
sample, segment_info = dataset[idx] |
|
assert sample.shape[0] == channels |
|
assert sample.shape[1] == int(segment_duration * sample_rate) |
|
assert segment_info.sample_rate == sample_rate |
|
assert segment_info.total_frames == int(segment_duration * sample_rate) |
|
assert segment_info.n_frames <= int(segment_duration * sample_rate) |
|
assert segment_info.seek_time >= 0 |
|
|
|
def test_dataset_return_info_no_segment_duration(self): |
|
total_examples = 10 |
|
num_samples = 20 |
|
min_duration, max_duration = 1., 4. |
|
segment_duration = None |
|
sample_rate = 16_000 |
|
channels = 1 |
|
dataset = self._create_audio_dataset( |
|
'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate, |
|
channels=channels, segment_duration=segment_duration, num_examples=num_samples, return_info=True) |
|
assert len(dataset) == total_examples |
|
assert dataset.sample_rate == sample_rate |
|
assert dataset.channels == channels |
|
for idx in range(len(dataset)): |
|
sample, segment_info = dataset[idx] |
|
assert sample.shape[0] == channels |
|
assert sample.shape[1] == segment_info.total_frames |
|
assert segment_info.sample_rate == sample_rate |
|
assert segment_info.n_frames <= segment_info.total_frames |
|
|
|
def test_dataset_collate_fn(self): |
|
total_examples = 10 |
|
num_samples = 20 |
|
min_duration, max_duration = 1., 4. |
|
segment_duration = 1. |
|
sample_rate = 16_000 |
|
channels = 1 |
|
dataset = self._create_audio_dataset( |
|
'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate, |
|
channels=channels, segment_duration=segment_duration, num_examples=num_samples, return_info=False) |
|
batch_size = 4 |
|
dataloader = DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
num_workers=0 |
|
) |
|
for idx, batch in enumerate(dataloader): |
|
assert batch.shape[0] == batch_size |
|
|
|
@pytest.mark.parametrize("segment_duration", [1.0, None]) |
|
def test_dataset_with_meta_collate_fn(self, segment_duration): |
|
total_examples = 10 |
|
num_samples = 20 |
|
min_duration, max_duration = 1., 4. |
|
segment_duration = 1. |
|
sample_rate = 16_000 |
|
channels = 1 |
|
dataset = self._create_audio_dataset( |
|
'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate, |
|
channels=channels, segment_duration=segment_duration, num_examples=num_samples, return_info=True) |
|
batch_size = 4 |
|
dataloader = DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
collate_fn=dataset.collater, |
|
num_workers=0 |
|
) |
|
for idx, batch in enumerate(dataloader): |
|
wav, infos = batch |
|
assert wav.shape[0] == batch_size |
|
assert len(infos) == batch_size |
|
|
|
@pytest.mark.parametrize("segment_duration,sample_on_weight,sample_on_duration,a_hist,b_hist,c_hist", [ |
|
[1, True, True, 0.5, 0.5, 0.0], |
|
[1, False, True, 0.25, 0.5, 0.25], |
|
[1, True, False, 0.666, 0.333, 0.0], |
|
[1, False, False, 0.333, 0.333, 0.333], |
|
[None, False, False, 0.333, 0.333, 0.333]]) |
|
def test_sample_with_weight(self, segment_duration, sample_on_weight, sample_on_duration, a_hist, b_hist, c_hist): |
|
random.seed(1234) |
|
rng = torch.Generator() |
|
rng.manual_seed(1234) |
|
|
|
def _get_histogram(dataset, repetitions=20_000): |
|
counts = {file_meta.path: 0. for file_meta in meta} |
|
for _ in range(repetitions): |
|
file_meta = dataset.sample_file(rng) |
|
counts[file_meta.path] += 1 |
|
return {name: count / repetitions for name, count in counts.items()} |
|
|
|
meta = [ |
|
AudioMeta(path='a', duration=5, sample_rate=1, weight=2), |
|
AudioMeta(path='b', duration=10, sample_rate=1, weight=None), |
|
AudioMeta(path='c', duration=5, sample_rate=1, weight=0), |
|
] |
|
dataset = AudioDataset( |
|
meta, segment_duration=segment_duration, sample_on_weight=sample_on_weight, |
|
sample_on_duration=sample_on_duration) |
|
hist = _get_histogram(dataset) |
|
assert math.isclose(hist['a'], a_hist, abs_tol=0.01) |
|
assert math.isclose(hist['b'], b_hist, abs_tol=0.01) |
|
assert math.isclose(hist['c'], c_hist, abs_tol=0.01) |
|
|
|
def test_meta_duration_filter_all(self): |
|
meta = [ |
|
AudioMeta(path='a', duration=5, sample_rate=1, weight=2), |
|
AudioMeta(path='b', duration=10, sample_rate=1, weight=None), |
|
AudioMeta(path='c', duration=5, sample_rate=1, weight=0), |
|
] |
|
try: |
|
AudioDataset(meta, segment_duration=11, min_segment_ratio=1) |
|
assert False |
|
except AssertionError: |
|
assert True |
|
|
|
def test_meta_duration_filter_long(self): |
|
meta = [ |
|
AudioMeta(path='a', duration=5, sample_rate=1, weight=2), |
|
AudioMeta(path='b', duration=10, sample_rate=1, weight=None), |
|
AudioMeta(path='c', duration=5, sample_rate=1, weight=0), |
|
] |
|
dataset = AudioDataset(meta, segment_duration=None, min_segment_ratio=1, max_audio_duration=7) |
|
assert len(dataset) == 2 |
|
|