|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
import typing as tp |
|
|
|
from einops import rearrange |
|
import torch |
|
from torch import nn |
|
|
|
from .. import quantization as qt |
|
|
|
|
|
class CompressionModel(ABC, nn.Module): |
|
|
|
@abstractmethod |
|
def forward(self, x: torch.Tensor) -> qt.QuantizedResult: |
|
... |
|
|
|
@abstractmethod |
|
def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: |
|
"""See `EncodecModel.encode`""" |
|
... |
|
|
|
@abstractmethod |
|
def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): |
|
"""See `EncodecModel.decode`""" |
|
... |
|
|
|
@property |
|
@abstractmethod |
|
def channels(self) -> int: |
|
... |
|
|
|
@property |
|
@abstractmethod |
|
def frame_rate(self) -> int: |
|
... |
|
|
|
@property |
|
@abstractmethod |
|
def sample_rate(self) -> int: |
|
... |
|
|
|
@property |
|
@abstractmethod |
|
def cardinality(self) -> int: |
|
... |
|
|
|
@property |
|
@abstractmethod |
|
def num_codebooks(self) -> int: |
|
... |
|
|
|
@property |
|
@abstractmethod |
|
def total_codebooks(self) -> int: |
|
... |
|
|
|
@abstractmethod |
|
def set_num_codebooks(self, n: int): |
|
"""Set the active number of codebooks used by the quantizer. |
|
""" |
|
... |
|
|
|
|
|
class EncodecModel(CompressionModel): |
|
"""Encodec model operating on the raw waveform. |
|
|
|
Args: |
|
encoder (nn.Module): Encoder network. |
|
decoder (nn.Module): Decoder network. |
|
quantizer (qt.BaseQuantizer): Quantizer network. |
|
frame_rate (int): Frame rate for the latent representation. |
|
sample_rate (int): Audio sample rate. |
|
channels (int): Number of audio channels. |
|
causal (bool): Whether to use a causal version of the model. |
|
renormalize (bool): Whether to renormalize the audio before running the model. |
|
""" |
|
|
|
|
|
frame_rate: int = 0 |
|
sample_rate: int = 0 |
|
channels: int = 0 |
|
|
|
def __init__(self, |
|
encoder: nn.Module, |
|
decoder: nn.Module, |
|
quantizer: qt.BaseQuantizer, |
|
frame_rate: int, |
|
sample_rate: int, |
|
channels: int, |
|
causal: bool = False, |
|
renormalize: bool = False): |
|
super().__init__() |
|
self.encoder = encoder |
|
self.decoder = decoder |
|
self.quantizer = quantizer |
|
self.frame_rate = frame_rate |
|
self.sample_rate = sample_rate |
|
self.channels = channels |
|
self.renormalize = renormalize |
|
self.causal = causal |
|
if self.causal: |
|
|
|
|
|
assert not self.renormalize, 'Causal model does not support renormalize' |
|
|
|
@property |
|
def total_codebooks(self): |
|
"""Total number of quantizer codebooks available. |
|
""" |
|
return self.quantizer.total_codebooks |
|
|
|
@property |
|
def num_codebooks(self): |
|
"""Active number of codebooks used by the quantizer. |
|
""" |
|
return self.quantizer.num_codebooks |
|
|
|
def set_num_codebooks(self, n: int): |
|
"""Set the active number of codebooks used by the quantizer. |
|
""" |
|
self.quantizer.set_num_codebooks(n) |
|
|
|
@property |
|
def cardinality(self): |
|
"""Cardinality of each codebook. |
|
""" |
|
return self.quantizer.bins |
|
|
|
def preprocess(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: |
|
scale: tp.Optional[torch.Tensor] |
|
if self.renormalize: |
|
mono = x.mean(dim=1, keepdim=True) |
|
volume = mono.pow(2).mean(dim=2, keepdim=True).sqrt() |
|
scale = 1e-8 + volume |
|
x = x / scale |
|
scale = scale.view(-1, 1) |
|
else: |
|
scale = None |
|
return x, scale |
|
|
|
def postprocess(self, |
|
x: torch.Tensor, |
|
scale: tp.Optional[torch.Tensor] = None) -> torch.Tensor: |
|
if scale is not None: |
|
assert self.renormalize |
|
x = x * scale.view(-1, 1, 1) |
|
return x |
|
|
|
def forward(self, x: torch.Tensor) -> qt.QuantizedResult: |
|
assert x.dim() == 3 |
|
length = x.shape[-1] |
|
x, scale = self.preprocess(x) |
|
|
|
emb = self.encoder(x) |
|
q_res = self.quantizer(emb, self.frame_rate) |
|
out = self.decoder(q_res.x) |
|
|
|
|
|
assert out.shape[-1] >= length, (out.shape[-1], length) |
|
out = out[..., :length] |
|
|
|
q_res.x = self.postprocess(out, scale) |
|
|
|
return q_res |
|
|
|
def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: |
|
"""Encode the given input tensor to quantized representation along with scale parameter. |
|
|
|
Args: |
|
x (torch.Tensor): Float tensor of shape [B, C, T] |
|
|
|
Returns: |
|
codes, scale (tp.Tuple[torch.Tensor, torch.Tensor]): Tuple composed of: |
|
codes a float tensor of shape [B, K, T] with K the number of codebooks used and T the timestep. |
|
scale a float tensor containing the scale for audio renormalizealization. |
|
""" |
|
assert x.dim() == 3 |
|
x, scale = self.preprocess(x) |
|
emb = self.encoder(x) |
|
codes = self.quantizer.encode(emb) |
|
return codes, scale |
|
|
|
def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): |
|
"""Decode the given codes to a reconstructed representation, using the scale to perform |
|
audio denormalization if needed. |
|
|
|
Args: |
|
codes (torch.Tensor): Int tensor of shape [B, K, T] |
|
scale (tp.Optional[torch.Tensor]): Float tensor containing the scale value. |
|
|
|
Returns: |
|
out (torch.Tensor): Float tensor of shape [B, C, T], the reconstructed audio. |
|
""" |
|
emb = self.quantizer.decode(codes) |
|
out = self.decoder(emb) |
|
out = self.postprocess(out, scale) |
|
|
|
return out |
|
|
|
|
|
class FlattenedCompressionModel(CompressionModel): |
|
"""Wraps a CompressionModel and flatten its codebooks, e.g. |
|
instead of returning [B, K, T], return [B, S, T * (K // S)] with |
|
S the number of codebooks per step, and `K // S` the number of 'virtual steps' |
|
for each real time step. |
|
|
|
Args: |
|
model (CompressionModel): compression model to wrap. |
|
codebooks_per_step (int): number of codebooks to keep per step, |
|
this must divide the number of codebooks provided by the wrapped model. |
|
extend_cardinality (bool): if True, and for instance if codebooks_per_step = 1, |
|
if each codebook has a cardinality N, then the first codebook will |
|
use the range [0, N - 1], and the second [N, 2 N - 1] etc. |
|
On decoding, this can lead to potentially invalid sequences. |
|
Any invalid entry will be silently remapped to the proper range |
|
with a modulo. |
|
""" |
|
def __init__(self, model: CompressionModel, codebooks_per_step: int = 1, |
|
extend_cardinality: bool = True): |
|
super().__init__() |
|
self.model = model |
|
self.codebooks_per_step = codebooks_per_step |
|
self.extend_cardinality = extend_cardinality |
|
|
|
@property |
|
def total_codebooks(self): |
|
return self.model.total_codebooks |
|
|
|
@property |
|
def num_codebooks(self): |
|
"""Active number of codebooks used by the quantizer. |
|
|
|
..Warning:: this reports the number of codebooks after the flattening |
|
of the codebooks! |
|
""" |
|
assert self.model.num_codebooks % self.codebooks_per_step == 0 |
|
return self.codebooks_per_step |
|
|
|
def set_num_codebooks(self, n: int): |
|
"""Set the active number of codebooks used by the quantizer. |
|
|
|
..Warning:: this sets the number of codebooks **before** the flattening |
|
of the codebooks. |
|
""" |
|
assert n % self.codebooks_per_step == 0 |
|
self.model.set_num_codebooks(n) |
|
|
|
@property |
|
def num_virtual_steps(self) -> int: |
|
"""Return the number of virtual steps, e.g. one real step |
|
will be split into that many steps. |
|
""" |
|
return self.model.num_codebooks // self.codebooks_per_step |
|
|
|
@property |
|
def frame_rate(self) -> int: |
|
return self.model.frame_rate * self.num_virtual_steps |
|
|
|
@property |
|
def sample_rate(self) -> int: |
|
return self.model.sample_rate |
|
|
|
@property |
|
def channels(self) -> int: |
|
return self.model.channels |
|
|
|
@property |
|
def cardinality(self): |
|
"""Cardinality of each codebook. |
|
""" |
|
if self.extend_cardinality: |
|
return self.model.cardinality * self.num_virtual_steps |
|
else: |
|
return self.model.cardinality |
|
|
|
def forward(self, x: torch.Tensor) -> qt.QuantizedResult: |
|
raise NotImplementedError("Not supported, use encode and decode.") |
|
|
|
def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: |
|
indices, scales = self.model.encode(x) |
|
B, K, T = indices.shape |
|
indices = rearrange(indices, 'b (k v) t -> b k t v', k=self.codebooks_per_step) |
|
if self.extend_cardinality: |
|
for virtual_step in range(1, self.num_virtual_steps): |
|
indices[..., virtual_step] += self.model.cardinality * virtual_step |
|
indices = rearrange(indices, 'b k t v -> b k (t v)') |
|
return (indices, scales) |
|
|
|
def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): |
|
B, K, T = codes.shape |
|
assert T % self.num_virtual_steps == 0 |
|
codes = rearrange(codes, 'b k (t v) -> b (k v) t', v=self.num_virtual_steps) |
|
|
|
|
|
codes = codes % self.model.cardinality |
|
return self.model.decode(codes, scale) |
|
|