MusicGen / tests /modules /test_codebooks_patterns.py
adefossez's picture
Initial commit
5238467
raw
history blame
11 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import pytest
import torch
from audiocraft.modules.codebooks_patterns import (
DelayedPatternProvider,
ParallelPatternProvider,
Pattern,
UnrolledPatternProvider,
)
class TestParallelPatternProvider:
@pytest.mark.parametrize("n_q", [1, 4, 32])
@pytest.mark.parametrize("timesteps", [0, 1, 16, 100])
def test_get_pattern(self, n_q: int, timesteps: int):
provider = ParallelPatternProvider(n_q)
pattern = provider.get_pattern(timesteps)
# + 1 to account for 1st step
assert len(pattern.layout) == timesteps + 1
@pytest.mark.parametrize("n_q", [1, 4, 32])
@pytest.mark.parametrize("timesteps", [8, 16, 100])
def test_pattern_content(self, n_q: int, timesteps: int):
provider = ParallelPatternProvider(n_q)
pattern = provider.get_pattern(timesteps)
for s, v in enumerate(pattern.layout):
for i, code in enumerate(v):
assert i == code.q
assert code.t == s - 1 # account for the 1st empty step
@pytest.mark.parametrize("n_q", [1, 4, 32])
@pytest.mark.parametrize("timesteps", [8, 16, 100])
def test_pattern_max_delay(self, n_q: int, timesteps: int):
provider = ParallelPatternProvider(n_q)
pattern = provider.get_pattern(timesteps)
assert pattern.max_delay == 0
assert len(pattern.valid_layout) == len(pattern.layout) - pattern.max_delay
class TestDelayedPatternProvider:
@pytest.mark.parametrize("n_q", [1, 4, 32])
@pytest.mark.parametrize("timesteps", [0, 1, 16, 100])
def test_get_pattern(self, n_q: int, timesteps: int):
delays = [
list(range(n_q)),
[0] + [1] * (n_q - 1),
[0] + [4] * (n_q - 1),
]
for delay in delays:
provider = DelayedPatternProvider(n_q, delay)
pattern = provider.get_pattern(timesteps)
# + 1 to account for 1st step
assert len(pattern.layout) == timesteps + max(delay) + 1
@pytest.mark.parametrize("n_q", [1, 4, 32])
@pytest.mark.parametrize("timesteps", [8, 16, 100])
def test_pattern_content(self, n_q: int, timesteps: int):
provider = DelayedPatternProvider(n_q)
pattern = provider.get_pattern(timesteps)
for s, v in enumerate(pattern.layout):
for i, code in enumerate(v):
assert i == code.q
assert code.t == max(0, s - code.q - 1)
@pytest.mark.parametrize("timesteps", [8, 16, 100])
@pytest.mark.parametrize("delay", [[0, 1, 2, 3], [0, 1, 1, 1], [0, 3, 3, 3], [0, 3]])
def test_pattern_max_delay(self, timesteps: int, delay: list):
provider = DelayedPatternProvider(len(delay), delay)
pattern = provider.get_pattern(timesteps)
assert pattern.max_delay == max(delay)
assert len(pattern.valid_layout) == len(pattern.layout) - pattern.max_delay
class TestUnrolledPatternProvider:
@pytest.mark.parametrize("timesteps", [0, 1, 16])
@pytest.mark.parametrize("flattening", [[0, 1, 2], [0, 1, 1]])
@pytest.mark.parametrize("delays", [[0, 0, 0], [0, 5, 5]])
def test_get_pattern(self, timesteps: int, flattening: list, delays: list):
n_q = len(flattening)
max_delay = max(delays)
provider = UnrolledPatternProvider(n_q, flattening, delays)
pattern = provider.get_pattern(timesteps)
assert len(pattern.layout) == provider.num_virtual_steps(timesteps) + max_delay
@pytest.mark.parametrize("timesteps", [0, 1, 16])
@pytest.mark.parametrize("flattening", [[0, 1, 2], [0, 1, 1]])
@pytest.mark.parametrize("delays", [[0, 0, 0], [0, 5, 5]])
def test_pattern_max_delay(self, timesteps: int, flattening: list, delays: list):
n_q = len(flattening)
max_delay = max(delays)
provider = UnrolledPatternProvider(n_q, flattening, delays)
pattern = provider.get_pattern(timesteps)
assert pattern.max_delay == max_delay
class TestPattern:
def ref_build_pattern_sequence(self, z: torch.Tensor, pattern: Pattern, special_token: int):
"""Reference method to build the sequence from the pattern without using fancy scatter."""
bs, n_q, T = z.shape
z = z.cpu().numpy()
assert n_q == pattern.n_q
assert T <= pattern.timesteps
inp = torch.full((bs, n_q, len(pattern.layout)), special_token, dtype=torch.long).numpy()
inp[:] = special_token
for s, v in enumerate(pattern.layout):
for (t, q) in v:
if t < T:
inp[:, q, s] = z[:, q, t]
return torch.from_numpy(inp)
def ref_revert_pattern_sequence(self, z: torch.Tensor, pattern: Pattern, special_token: int):
"""Reference method to revert the sequence from the pattern without using fancy scatter."""
z = z.cpu().numpy()
bs, n_q, S = z.shape
assert pattern.n_q == n_q
inp = torch.full((bs, pattern.n_q, pattern.timesteps), special_token, dtype=torch.long).numpy()
inp[:] = special_token
for s, v in enumerate(pattern.layout):
for (t, q) in v:
if t < pattern.timesteps:
inp[:, q, t] = z[:, q, s]
return torch.from_numpy(inp)
def ref_revert_pattern_logits(self, z: torch.Tensor, pattern: Pattern, special_token: float):
"""Reference method to revert the logits from the pattern without using fancy scatter."""
z = z.cpu().numpy()
bs, card, n_q, S = z.shape
assert pattern.n_q == n_q
ref_layout = pattern.layout
inp = torch.full((bs, card, pattern.n_q, pattern.timesteps), special_token, dtype=torch.float).numpy()
inp[:] = special_token
for s, v in enumerate(ref_layout[1:]):
if s < S:
for (t, q) in v:
if t < pattern.timesteps:
inp[:, :, q, t] = z[:, :, q, s]
return torch.from_numpy(inp)
def _get_pattern_providers(self, n_q: int):
pattern_provider_1 = ParallelPatternProvider(n_q)
pattern_provider_2 = DelayedPatternProvider(n_q, list(range(n_q)))
pattern_provider_3 = DelayedPatternProvider(n_q, [0] + [1] * (n_q - 1))
pattern_provider_4 = UnrolledPatternProvider(
n_q, flattening=list(range(n_q)), delays=[0] * n_q
)
pattern_provider_5 = UnrolledPatternProvider(
n_q, flattening=[0] + [1] * (n_q - 1), delays=[0] * n_q
)
pattern_provider_6 = UnrolledPatternProvider(
n_q, flattening=[0] + [1] * (n_q - 1), delays=[0] + [5] * (n_q - 1)
)
return [
pattern_provider_1,
pattern_provider_2,
pattern_provider_3,
pattern_provider_4,
pattern_provider_5,
pattern_provider_6,
]
@pytest.mark.parametrize("n_q", [1, 4, 32])
@pytest.mark.parametrize("timesteps", [16, 72])
def test_build_pattern_sequence(self, n_q: int, timesteps: int):
bs = 2
card = 256
special_token = card
pattern_providers = self._get_pattern_providers(n_q)
for pattern_provider in pattern_providers:
pattern = pattern_provider.get_pattern(timesteps)
# we can correctly build the sequence from the pattern
z = torch.randint(0, card, (bs, n_q, timesteps))
ref_res = self.ref_build_pattern_sequence(z, pattern, special_token)
res, indexes, mask = pattern.build_pattern_sequence(z, special_token)
assert (res == ref_res).float().mean() == 1.0
# expected assertion fails on the number of timesteps
invalid_timesteps = [timesteps + 1]
if pattern.num_sequence_steps != pattern.timesteps:
invalid_timesteps.append(pattern.num_sequence_steps)
for i_timesteps in invalid_timesteps:
z2 = torch.randint(0, card, (bs, n_q, i_timesteps))
with pytest.raises(AssertionError):
pattern.build_pattern_sequence(z2, special_token)
# expected assertion fails on the number of codebooks
invalid_qs = [0, n_q - 1, n_q + 1]
for i_q in invalid_qs:
z3 = torch.randint(0, card, (bs, i_q, timesteps))
with pytest.raises(AssertionError):
pattern.build_pattern_sequence(z3, special_token)
@pytest.mark.parametrize("n_q", [1, 4, 32])
@pytest.mark.parametrize("timesteps", [16, 72])
def test_revert_pattern_sequence(self, n_q: int, timesteps: int):
bs = 2
card = 256
special_token = card
pattern_providers = self._get_pattern_providers(n_q)
for pattern_provider in pattern_providers:
pattern = pattern_provider.get_pattern(timesteps)
# this works assuming previous tests are successful
z = torch.randint(0, card, (bs, n_q, timesteps))
s = self.ref_build_pattern_sequence(z, pattern, special_token)
ref_out = self.ref_revert_pattern_sequence(s, pattern, special_token)
# ensure our reference script retrieve the original sequence
assert z.shape == ref_out.shape
assert (z == ref_out).float().mean() == 1.0
# now we can test the scatter version
out, indexes, mask = pattern.revert_pattern_sequence(s, special_token)
assert out.shape == ref_out.shape
assert (out == ref_out).float().mean() == 1.0
@pytest.mark.parametrize("n_q", [1, 4, 32])
@pytest.mark.parametrize("timesteps", [16, 72])
@pytest.mark.parametrize("card", [1, 2, 256, 1024])
def test_revert_pattern_logits(self, n_q: int, timesteps: int, card: int):
bs = 2
special_token = card
logits_special_token = float('nan')
pattern_providers = self._get_pattern_providers(n_q)
for pattern_provider in pattern_providers:
pattern = pattern_provider.get_pattern(timesteps)
# this works assuming previous tests are successful
z = torch.randint(0, card, (bs, n_q, timesteps))
s = self.ref_build_pattern_sequence(z, pattern, special_token)
logits = torch.randn((bs, card, n_q, s.shape[-1]))
ref_out = self.ref_revert_pattern_logits(logits, pattern, logits_special_token)
# ensure our reference script retrieve the original sequence
assert ref_out.shape == torch.Size([bs, card, n_q, timesteps])
# now we can test the scatter version
out, indexes, mask = pattern.revert_pattern_logits(logits, logits_special_token)
assert out.shape == ref_out.shape
assert (out == ref_out).float().mean() == 1.0