|
|
|
|
|
|
|
|
|
|
|
|
|
import pytest |
|
import torch |
|
|
|
from audiocraft.modules.codebooks_patterns import ( |
|
DelayedPatternProvider, |
|
ParallelPatternProvider, |
|
Pattern, |
|
UnrolledPatternProvider, |
|
) |
|
|
|
|
|
class TestParallelPatternProvider: |
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32]) |
|
@pytest.mark.parametrize("timesteps", [0, 1, 16, 100]) |
|
def test_get_pattern(self, n_q: int, timesteps: int): |
|
provider = ParallelPatternProvider(n_q) |
|
pattern = provider.get_pattern(timesteps) |
|
|
|
assert len(pattern.layout) == timesteps + 1 |
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32]) |
|
@pytest.mark.parametrize("timesteps", [8, 16, 100]) |
|
def test_pattern_content(self, n_q: int, timesteps: int): |
|
provider = ParallelPatternProvider(n_q) |
|
pattern = provider.get_pattern(timesteps) |
|
for s, v in enumerate(pattern.layout): |
|
for i, code in enumerate(v): |
|
assert i == code.q |
|
assert code.t == s - 1 |
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32]) |
|
@pytest.mark.parametrize("timesteps", [8, 16, 100]) |
|
def test_pattern_max_delay(self, n_q: int, timesteps: int): |
|
provider = ParallelPatternProvider(n_q) |
|
pattern = provider.get_pattern(timesteps) |
|
assert pattern.max_delay == 0 |
|
assert len(pattern.valid_layout) == len(pattern.layout) - pattern.max_delay |
|
|
|
|
|
class TestDelayedPatternProvider: |
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32]) |
|
@pytest.mark.parametrize("timesteps", [0, 1, 16, 100]) |
|
def test_get_pattern(self, n_q: int, timesteps: int): |
|
delays = [ |
|
list(range(n_q)), |
|
[0] + [1] * (n_q - 1), |
|
[0] + [4] * (n_q - 1), |
|
] |
|
for delay in delays: |
|
provider = DelayedPatternProvider(n_q, delay) |
|
pattern = provider.get_pattern(timesteps) |
|
|
|
assert len(pattern.layout) == timesteps + max(delay) + 1 |
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32]) |
|
@pytest.mark.parametrize("timesteps", [8, 16, 100]) |
|
def test_pattern_content(self, n_q: int, timesteps: int): |
|
provider = DelayedPatternProvider(n_q) |
|
pattern = provider.get_pattern(timesteps) |
|
for s, v in enumerate(pattern.layout): |
|
for i, code in enumerate(v): |
|
assert i == code.q |
|
assert code.t == max(0, s - code.q - 1) |
|
|
|
@pytest.mark.parametrize("timesteps", [8, 16, 100]) |
|
@pytest.mark.parametrize("delay", [[0, 1, 2, 3], [0, 1, 1, 1], [0, 3, 3, 3], [0, 3]]) |
|
def test_pattern_max_delay(self, timesteps: int, delay: list): |
|
provider = DelayedPatternProvider(len(delay), delay) |
|
pattern = provider.get_pattern(timesteps) |
|
assert pattern.max_delay == max(delay) |
|
assert len(pattern.valid_layout) == len(pattern.layout) - pattern.max_delay |
|
|
|
|
|
class TestUnrolledPatternProvider: |
|
|
|
@pytest.mark.parametrize("timesteps", [0, 1, 16]) |
|
@pytest.mark.parametrize("flattening", [[0, 1, 2], [0, 1, 1]]) |
|
@pytest.mark.parametrize("delays", [[0, 0, 0], [0, 5, 5]]) |
|
def test_get_pattern(self, timesteps: int, flattening: list, delays: list): |
|
n_q = len(flattening) |
|
max_delay = max(delays) |
|
provider = UnrolledPatternProvider(n_q, flattening, delays) |
|
pattern = provider.get_pattern(timesteps) |
|
assert len(pattern.layout) == provider.num_virtual_steps(timesteps) + max_delay |
|
|
|
@pytest.mark.parametrize("timesteps", [0, 1, 16]) |
|
@pytest.mark.parametrize("flattening", [[0, 1, 2], [0, 1, 1]]) |
|
@pytest.mark.parametrize("delays", [[0, 0, 0], [0, 5, 5]]) |
|
def test_pattern_max_delay(self, timesteps: int, flattening: list, delays: list): |
|
n_q = len(flattening) |
|
max_delay = max(delays) |
|
provider = UnrolledPatternProvider(n_q, flattening, delays) |
|
pattern = provider.get_pattern(timesteps) |
|
assert pattern.max_delay == max_delay |
|
|
|
|
|
class TestPattern: |
|
|
|
def ref_build_pattern_sequence(self, z: torch.Tensor, pattern: Pattern, special_token: int): |
|
"""Reference method to build the sequence from the pattern without using fancy scatter.""" |
|
bs, n_q, T = z.shape |
|
z = z.cpu().numpy() |
|
assert n_q == pattern.n_q |
|
assert T <= pattern.timesteps |
|
inp = torch.full((bs, n_q, len(pattern.layout)), special_token, dtype=torch.long).numpy() |
|
inp[:] = special_token |
|
for s, v in enumerate(pattern.layout): |
|
for (t, q) in v: |
|
if t < T: |
|
inp[:, q, s] = z[:, q, t] |
|
return torch.from_numpy(inp) |
|
|
|
def ref_revert_pattern_sequence(self, z: torch.Tensor, pattern: Pattern, special_token: int): |
|
"""Reference method to revert the sequence from the pattern without using fancy scatter.""" |
|
z = z.cpu().numpy() |
|
bs, n_q, S = z.shape |
|
assert pattern.n_q == n_q |
|
inp = torch.full((bs, pattern.n_q, pattern.timesteps), special_token, dtype=torch.long).numpy() |
|
inp[:] = special_token |
|
for s, v in enumerate(pattern.layout): |
|
for (t, q) in v: |
|
if t < pattern.timesteps: |
|
inp[:, q, t] = z[:, q, s] |
|
return torch.from_numpy(inp) |
|
|
|
def ref_revert_pattern_logits(self, z: torch.Tensor, pattern: Pattern, special_token: float): |
|
"""Reference method to revert the logits from the pattern without using fancy scatter.""" |
|
z = z.cpu().numpy() |
|
bs, card, n_q, S = z.shape |
|
assert pattern.n_q == n_q |
|
ref_layout = pattern.layout |
|
inp = torch.full((bs, card, pattern.n_q, pattern.timesteps), special_token, dtype=torch.float).numpy() |
|
inp[:] = special_token |
|
for s, v in enumerate(ref_layout[1:]): |
|
if s < S: |
|
for (t, q) in v: |
|
if t < pattern.timesteps: |
|
inp[:, :, q, t] = z[:, :, q, s] |
|
return torch.from_numpy(inp) |
|
|
|
def _get_pattern_providers(self, n_q: int): |
|
pattern_provider_1 = ParallelPatternProvider(n_q) |
|
pattern_provider_2 = DelayedPatternProvider(n_q, list(range(n_q))) |
|
pattern_provider_3 = DelayedPatternProvider(n_q, [0] + [1] * (n_q - 1)) |
|
pattern_provider_4 = UnrolledPatternProvider( |
|
n_q, flattening=list(range(n_q)), delays=[0] * n_q |
|
) |
|
pattern_provider_5 = UnrolledPatternProvider( |
|
n_q, flattening=[0] + [1] * (n_q - 1), delays=[0] * n_q |
|
) |
|
pattern_provider_6 = UnrolledPatternProvider( |
|
n_q, flattening=[0] + [1] * (n_q - 1), delays=[0] + [5] * (n_q - 1) |
|
) |
|
return [ |
|
pattern_provider_1, |
|
pattern_provider_2, |
|
pattern_provider_3, |
|
pattern_provider_4, |
|
pattern_provider_5, |
|
pattern_provider_6, |
|
] |
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32]) |
|
@pytest.mark.parametrize("timesteps", [16, 72]) |
|
def test_build_pattern_sequence(self, n_q: int, timesteps: int): |
|
bs = 2 |
|
card = 256 |
|
special_token = card |
|
|
|
pattern_providers = self._get_pattern_providers(n_q) |
|
for pattern_provider in pattern_providers: |
|
pattern = pattern_provider.get_pattern(timesteps) |
|
|
|
z = torch.randint(0, card, (bs, n_q, timesteps)) |
|
ref_res = self.ref_build_pattern_sequence(z, pattern, special_token) |
|
res, indexes, mask = pattern.build_pattern_sequence(z, special_token) |
|
assert (res == ref_res).float().mean() == 1.0 |
|
|
|
|
|
invalid_timesteps = [timesteps + 1] |
|
if pattern.num_sequence_steps != pattern.timesteps: |
|
invalid_timesteps.append(pattern.num_sequence_steps) |
|
for i_timesteps in invalid_timesteps: |
|
z2 = torch.randint(0, card, (bs, n_q, i_timesteps)) |
|
with pytest.raises(AssertionError): |
|
pattern.build_pattern_sequence(z2, special_token) |
|
|
|
|
|
invalid_qs = [0, n_q - 1, n_q + 1] |
|
for i_q in invalid_qs: |
|
z3 = torch.randint(0, card, (bs, i_q, timesteps)) |
|
with pytest.raises(AssertionError): |
|
pattern.build_pattern_sequence(z3, special_token) |
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32]) |
|
@pytest.mark.parametrize("timesteps", [16, 72]) |
|
def test_revert_pattern_sequence(self, n_q: int, timesteps: int): |
|
bs = 2 |
|
card = 256 |
|
special_token = card |
|
|
|
pattern_providers = self._get_pattern_providers(n_q) |
|
for pattern_provider in pattern_providers: |
|
pattern = pattern_provider.get_pattern(timesteps) |
|
|
|
z = torch.randint(0, card, (bs, n_q, timesteps)) |
|
s = self.ref_build_pattern_sequence(z, pattern, special_token) |
|
ref_out = self.ref_revert_pattern_sequence(s, pattern, special_token) |
|
|
|
assert z.shape == ref_out.shape |
|
assert (z == ref_out).float().mean() == 1.0 |
|
|
|
out, indexes, mask = pattern.revert_pattern_sequence(s, special_token) |
|
assert out.shape == ref_out.shape |
|
assert (out == ref_out).float().mean() == 1.0 |
|
|
|
@pytest.mark.parametrize("n_q", [1, 4, 32]) |
|
@pytest.mark.parametrize("timesteps", [16, 72]) |
|
@pytest.mark.parametrize("card", [1, 2, 256, 1024]) |
|
def test_revert_pattern_logits(self, n_q: int, timesteps: int, card: int): |
|
bs = 2 |
|
special_token = card |
|
logits_special_token = float('nan') |
|
|
|
pattern_providers = self._get_pattern_providers(n_q) |
|
for pattern_provider in pattern_providers: |
|
pattern = pattern_provider.get_pattern(timesteps) |
|
|
|
z = torch.randint(0, card, (bs, n_q, timesteps)) |
|
s = self.ref_build_pattern_sequence(z, pattern, special_token) |
|
logits = torch.randn((bs, card, n_q, s.shape[-1])) |
|
ref_out = self.ref_revert_pattern_logits(logits, pattern, logits_special_token) |
|
|
|
assert ref_out.shape == torch.Size([bs, card, n_q, timesteps]) |
|
|
|
out, indexes, mask = pattern.revert_pattern_logits(logits, logits_special_token) |
|
assert out.shape == ref_out.shape |
|
assert (out == ref_out).float().mean() == 1.0 |
|
|