Spaces:
Runtime error
Runtime error
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |
""" | |
Train a YOLOv5 model on a custom dataset | |
Usage: | |
$ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 | |
""" | |
import argparse | |
import logging | |
import math | |
import os | |
import random | |
import sys | |
import time | |
from copy import deepcopy | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
import yaml | |
from torch.cuda import amp | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.optim import SGD, Adam, lr_scheduler | |
from tqdm import tqdm | |
FILE = Path(__file__).absolute() | |
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path | |
import val # for end-of-epoch mAP | |
from models.experimental import attempt_load | |
from models.yolo import Model | |
from utils.autoanchor import check_anchors | |
from utils.callbacks import Callbacks | |
from utils.datasets import create_dataloader | |
from utils.downloads import attempt_download | |
from utils.general import ( | |
check_dataset, | |
check_file, | |
check_git_status, | |
check_img_size, | |
check_requirements, | |
check_suffix, | |
check_yaml, | |
colorstr, | |
get_latest_run, | |
increment_path, | |
init_seeds, | |
labels_to_class_weights, | |
labels_to_image_weights, | |
methods, | |
one_cycle, | |
print_mutation, | |
set_logging, | |
strip_optimizer, | |
) | |
from utils.loggers import Loggers | |
from utils.loggers.wandb.wandb_utils import check_wandb_resume | |
from utils.loss import ComputeLoss | |
from utils.metrics import fitness | |
from utils.plots import plot_evolve, plot_labels | |
from utils.torch_utils import ( | |
EarlyStopping, | |
ModelEMA, | |
de_parallel, | |
intersect_dicts, | |
select_device, | |
torch_distributed_zero_first, | |
) | |
LOGGER = logging.getLogger(__name__) | |
LOCAL_RANK = int( | |
os.getenv("LOCAL_RANK", -1) | |
) # https://pytorch.org/docs/stable/elastic/run.html | |
RANK = int(os.getenv("RANK", -1)) | |
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1)) | |
def train(hyp, opt, device, callbacks): # path/to/hyp.yaml or hyp dictionary | |
( | |
save_dir, | |
epochs, | |
batch_size, | |
weights, | |
single_cls, | |
evolve, | |
data, | |
cfg, | |
resume, | |
noval, | |
nosave, | |
workers, | |
freeze, | |
) = ( | |
Path(opt.save_dir), | |
opt.epochs, | |
opt.batch_size, | |
opt.weights, | |
opt.single_cls, | |
opt.evolve, | |
opt.data, | |
opt.cfg, | |
opt.resume, | |
opt.noval, | |
opt.nosave, | |
opt.workers, | |
opt.freeze, | |
) | |
# Directories | |
w = save_dir / "weights" # weights dir | |
w.mkdir(parents=True, exist_ok=True) # make dir | |
last, best = w / "last.pt", w / "best.pt" | |
# Hyperparameters | |
if isinstance(hyp, str): | |
with open(hyp) as f: | |
hyp = yaml.safe_load(f) # load hyps dict | |
LOGGER.info( | |
colorstr("hyperparameters: ") | |
+ ", ".join(f"{k}={v}" for k, v in hyp.items()) | |
) | |
# Save run settings | |
with open(save_dir / "hyp.yaml", "w") as f: | |
yaml.safe_dump(hyp, f, sort_keys=False) | |
with open(save_dir / "opt.yaml", "w") as f: | |
yaml.safe_dump(vars(opt), f, sort_keys=False) | |
data_dict = None | |
# Loggers | |
if RANK in [-1, 0]: | |
loggers = Loggers( | |
save_dir, weights, opt, hyp, LOGGER | |
) # loggers instance | |
if loggers.wandb: | |
data_dict = loggers.wandb.data_dict | |
if resume: | |
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp | |
# Register actions | |
for k in methods(loggers): | |
callbacks.register_action(k, callback=getattr(loggers, k)) | |
# Config | |
plots = not evolve # create plots | |
cuda = device.type != "cpu" | |
init_seeds(1 + RANK) | |
with torch_distributed_zero_first(RANK): | |
data_dict = data_dict or check_dataset(data) # check if None | |
train_path, val_path = data_dict["train"], data_dict["val"] | |
nc = 1 if single_cls else int(data_dict["nc"]) # number of classes | |
names = ( | |
["item"] | |
if single_cls and len(data_dict["names"]) != 1 | |
else data_dict["names"] | |
) # class names | |
assert ( | |
len(names) == nc | |
), f"{len(names)} names found for nc={nc} dataset in {data}" # check | |
is_coco = data.endswith("coco.yaml") and nc == 80 # COCO dataset | |
# Model | |
check_suffix(weights, ".pt") # check weights | |
pretrained = weights.endswith(".pt") | |
if pretrained: | |
with torch_distributed_zero_first(RANK): | |
weights = attempt_download( | |
weights | |
) # download if not found locally | |
ckpt = torch.load(weights, map_location=device) # load checkpoint | |
model = Model( | |
cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors") | |
).to( | |
device | |
) # create | |
exclude = ( | |
["anchor"] if (cfg or hyp.get("anchors")) and not resume else [] | |
) # exclude keys | |
csd = ( | |
ckpt["model"].float().state_dict() | |
) # checkpoint state_dict as FP32 | |
csd = intersect_dicts( | |
csd, model.state_dict(), exclude=exclude | |
) # intersect | |
model.load_state_dict(csd, strict=False) # load | |
LOGGER.info( | |
f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}" | |
) # report | |
else: | |
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to( | |
device | |
) # create | |
# Freeze | |
freeze = [f"model.{x}." for x in range(freeze)] # layers to freeze | |
for k, v in model.named_parameters(): | |
v.requires_grad = True # train all layers | |
if any(x in k for x in freeze): | |
print(f"freezing {k}") | |
v.requires_grad = False | |
# Optimizer | |
nbs = 64 # nominal batch size | |
accumulate = max( | |
round(nbs / batch_size), 1 | |
) # accumulate loss before optimizing | |
hyp["weight_decay"] *= batch_size * accumulate / nbs # scale weight_decay | |
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") | |
g0, g1, g2 = [], [], [] # optimizer parameter groups | |
for v in model.modules(): | |
if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter): # bias | |
g2.append(v.bias) | |
if isinstance(v, nn.BatchNorm2d): # weight (no decay) | |
g0.append(v.weight) | |
elif hasattr(v, "weight") and isinstance( | |
v.weight, nn.Parameter | |
): # weight (with decay) | |
g1.append(v.weight) | |
if opt.adam: | |
optimizer = Adam( | |
g0, lr=hyp["lr0"], betas=(hyp["momentum"], 0.999) | |
) # adjust beta1 to momentum | |
else: | |
optimizer = SGD( | |
g0, lr=hyp["lr0"], momentum=hyp["momentum"], nesterov=True | |
) | |
optimizer.add_param_group( | |
{"params": g1, "weight_decay": hyp["weight_decay"]} | |
) # add g1 with weight_decay | |
optimizer.add_param_group({"params": g2}) # add g2 (biases) | |
LOGGER.info( | |
f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups " | |
f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias" | |
) | |
del g0, g1, g2 | |
# Scheduler | |
if opt.linear_lr: | |
lf = ( | |
lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp["lrf"]) + hyp["lrf"] | |
) # linear | |
else: | |
lf = one_cycle(1, hyp["lrf"], epochs) # cosine 1->hyp['lrf'] | |
scheduler = lr_scheduler.LambdaLR( | |
optimizer, lr_lambda=lf | |
) # plot_lr_scheduler(optimizer, scheduler, epochs) | |
# EMA | |
ema = ModelEMA(model) if RANK in [-1, 0] else None | |
# Resume | |
start_epoch, best_fitness = 0, 0.0 | |
if pretrained: | |
# Optimizer | |
if ckpt["optimizer"] is not None: | |
optimizer.load_state_dict(ckpt["optimizer"]) | |
best_fitness = ckpt["best_fitness"] | |
# EMA | |
if ema and ckpt.get("ema"): | |
ema.ema.load_state_dict(ckpt["ema"].float().state_dict()) | |
ema.updates = ckpt["updates"] | |
# Epochs | |
start_epoch = ckpt["epoch"] + 1 | |
if resume: | |
assert ( | |
start_epoch > 0 | |
), f"{weights} training to {epochs} epochs is finished, nothing to resume." | |
if epochs < start_epoch: | |
LOGGER.info( | |
f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs." | |
) | |
epochs += ckpt["epoch"] # finetune additional epochs | |
del ckpt, csd | |
# Image sizes | |
gs = max(int(model.stride.max()), 32) # grid size (max stride) | |
nl = model.model[ | |
-1 | |
].nl # number of detection layers (used for scaling hyp['obj']) | |
imgsz = check_img_size( | |
opt.imgsz, gs, floor=gs * 2 | |
) # verify imgsz is gs-multiple | |
# DP mode | |
if cuda and RANK == -1 and torch.cuda.device_count() > 1: | |
logging.warning( | |
"DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n" | |
"See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started." | |
) | |
model = torch.nn.DataParallel(model) | |
# SyncBatchNorm | |
if opt.sync_bn and cuda and RANK != -1: | |
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) | |
LOGGER.info("Using SyncBatchNorm()") | |
# Trainloader | |
train_loader, dataset = create_dataloader( | |
train_path, | |
imgsz, | |
batch_size // WORLD_SIZE, | |
gs, | |
single_cls, | |
hyp=hyp, | |
augment=True, | |
cache=opt.cache, | |
rect=opt.rect, | |
rank=RANK, | |
workers=workers, | |
image_weights=opt.image_weights, | |
quad=opt.quad, | |
prefix=colorstr("train: "), | |
) | |
mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class | |
nb = len(train_loader) # number of batches | |
assert ( | |
mlc < nc | |
), f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}" | |
# Process 0 | |
if RANK in [-1, 0]: | |
val_loader = create_dataloader( | |
val_path, | |
imgsz, | |
batch_size // WORLD_SIZE * 2, | |
gs, | |
single_cls, | |
hyp=hyp, | |
cache=None if noval else opt.cache, | |
rect=True, | |
rank=-1, | |
workers=workers, | |
pad=0.5, | |
prefix=colorstr("val: "), | |
)[0] | |
if not resume: | |
labels = np.concatenate(dataset.labels, 0) | |
# c = torch.tensor(labels[:, 0]) # classes | |
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency | |
# model._initialize_biases(cf.to(device)) | |
if plots: | |
plot_labels(labels, names, save_dir) | |
# Anchors | |
if not opt.noautoanchor: | |
check_anchors( | |
dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz | |
) | |
model.half().float() # pre-reduce anchor precision | |
callbacks.run("on_pretrain_routine_end") | |
# DDP mode | |
if cuda and RANK != -1: | |
model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) | |
# Model parameters | |
hyp["box"] *= 3.0 / nl # scale to layers | |
hyp["cls"] *= nc / 80.0 * 3.0 / nl # scale to classes and layers | |
hyp["obj"] *= ( | |
(imgsz / 640) ** 2 * 3.0 / nl | |
) # scale to image size and layers | |
hyp["label_smoothing"] = opt.label_smoothing | |
model.nc = nc # attach number of classes to model | |
model.hyp = hyp # attach hyperparameters to model | |
model.class_weights = ( | |
labels_to_class_weights(dataset.labels, nc).to(device) * nc | |
) # attach class weights | |
model.names = names | |
# Start training | |
t0 = time.time() | |
nw = max( | |
round(hyp["warmup_epochs"] * nb), 1000 | |
) # number of warmup iterations, max(3 epochs, 1k iterations) | |
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training | |
last_opt_step = -1 | |
maps = np.zeros(nc) # mAP per class | |
results = ( | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) | |
scheduler.last_epoch = start_epoch - 1 # do not move | |
scaler = amp.GradScaler(enabled=cuda) | |
stopper = EarlyStopping(patience=opt.patience) | |
compute_loss = ComputeLoss(model) # init loss class | |
LOGGER.info( | |
f"Image sizes {imgsz} train, {imgsz} val\n" | |
f"Using {train_loader.num_workers} dataloader workers\n" | |
f"Logging results to {colorstr('bold', save_dir)}\n" | |
f"Starting training for {epochs} epochs..." | |
) | |
for epoch in range( | |
start_epoch, epochs | |
): # epoch ------------------------------------------------------------------ | |
model.train() | |
# Update image weights (optional, single-GPU only) | |
if opt.image_weights: | |
cw = ( | |
model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc | |
) # class weights | |
iw = labels_to_image_weights( | |
dataset.labels, nc=nc, class_weights=cw | |
) # image weights | |
dataset.indices = random.choices( | |
range(dataset.n), weights=iw, k=dataset.n | |
) # rand weighted idx | |
# Update mosaic border (optional) | |
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) | |
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders | |
mloss = torch.zeros(3, device=device) # mean losses | |
if RANK != -1: | |
train_loader.sampler.set_epoch(epoch) | |
pbar = enumerate(train_loader) | |
LOGGER.info( | |
("\n" + "%10s" * 7) | |
% ("Epoch", "gpu_mem", "box", "obj", "cls", "labels", "img_size") | |
) | |
if RANK in [-1, 0]: | |
pbar = tqdm(pbar, total=nb) # progress bar | |
optimizer.zero_grad() | |
for i, ( | |
imgs, | |
targets, | |
paths, | |
_, | |
) in ( | |
pbar | |
): # batch ------------------------------------------------------------- | |
ni = ( | |
i + nb * epoch | |
) # number integrated batches (since train start) | |
imgs = ( | |
imgs.to(device, non_blocking=True).float() / 255.0 | |
) # uint8 to float32, 0-255 to 0.0-1.0 | |
# Warmup | |
if ni <= nw: | |
xi = [0, nw] # x interp | |
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) | |
accumulate = max( | |
1, np.interp(ni, xi, [1, nbs / batch_size]).round() | |
) | |
for j, x in enumerate(optimizer.param_groups): | |
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 | |
x["lr"] = np.interp( | |
ni, | |
xi, | |
[ | |
hyp["warmup_bias_lr"] if j == 2 else 0.0, | |
x["initial_lr"] * lf(epoch), | |
], | |
) | |
if "momentum" in x: | |
x["momentum"] = np.interp( | |
ni, xi, [hyp["warmup_momentum"], hyp["momentum"]] | |
) | |
# Multi-scale | |
if opt.multi_scale: | |
sz = ( | |
random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs | |
) # size | |
sf = sz / max(imgs.shape[2:]) # scale factor | |
if sf != 1: | |
ns = [ | |
math.ceil(x * sf / gs) * gs for x in imgs.shape[2:] | |
] # new shape (stretched to gs-multiple) | |
imgs = nn.functional.interpolate( | |
imgs, size=ns, mode="bilinear", align_corners=False | |
) | |
# Forward | |
with amp.autocast(enabled=cuda): | |
pred = model(imgs) # forward | |
loss, loss_items = compute_loss( | |
pred, targets.to(device) | |
) # loss scaled by batch_size | |
if RANK != -1: | |
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode | |
if opt.quad: | |
loss *= 4.0 | |
# Backward | |
scaler.scale(loss).backward() | |
# Optimize | |
if ni - last_opt_step >= accumulate: | |
scaler.step(optimizer) # optimizer.step | |
scaler.update() | |
optimizer.zero_grad() | |
if ema: | |
ema.update(model) | |
last_opt_step = ni | |
# Log | |
if RANK in [-1, 0]: | |
mloss = (mloss * i + loss_items) / ( | |
i + 1 | |
) # update mean losses | |
mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB) | |
pbar.set_description( | |
("%10s" * 2 + "%10.4g" * 5) | |
% ( | |
f"{epoch}/{epochs - 1}", | |
mem, | |
*mloss, | |
targets.shape[0], | |
imgs.shape[-1], | |
) | |
) | |
callbacks.run( | |
"on_train_batch_end", | |
ni, | |
model, | |
imgs, | |
targets, | |
paths, | |
plots, | |
opt.sync_bn, | |
) | |
# end batch ------------------------------------------------------------------------------------------------ | |
# Scheduler | |
lr = [x["lr"] for x in optimizer.param_groups] # for loggers | |
scheduler.step() | |
if RANK in [-1, 0]: | |
# mAP | |
callbacks.run("on_train_epoch_end", epoch=epoch) | |
ema.update_attr( | |
model, | |
include=[ | |
"yaml", | |
"nc", | |
"hyp", | |
"names", | |
"stride", | |
"class_weights", | |
], | |
) | |
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop | |
if not noval or final_epoch: # Calculate mAP | |
results, maps, _ = val.run( | |
data_dict, | |
batch_size=batch_size // WORLD_SIZE * 2, | |
imgsz=imgsz, | |
model=ema.ema, | |
single_cls=single_cls, | |
dataloader=val_loader, | |
save_dir=save_dir, | |
save_json=is_coco and final_epoch, | |
verbose=nc < 50 and final_epoch, | |
plots=plots and final_epoch, | |
callbacks=callbacks, | |
compute_loss=compute_loss, | |
) | |
# Update best mAP | |
fi = fitness( | |
np.array(results).reshape(1, -1) | |
) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] | |
if fi > best_fitness: | |
best_fitness = fi | |
log_vals = list(mloss) + list(results) + lr | |
callbacks.run( | |
"on_fit_epoch_end", log_vals, epoch, best_fitness, fi | |
) | |
# Save model | |
if (not nosave) or (final_epoch and not evolve): # if save | |
ckpt = { | |
"epoch": epoch, | |
"best_fitness": best_fitness, | |
"model": deepcopy(de_parallel(model)).half(), | |
"ema": deepcopy(ema.ema).half(), | |
"updates": ema.updates, | |
"optimizer": optimizer.state_dict(), | |
"wandb_id": loggers.wandb.wandb_run.id | |
if loggers.wandb | |
else None, | |
} | |
# Save last, best and delete | |
torch.save(ckpt, last) | |
if best_fitness == fi: | |
torch.save(ckpt, best) | |
del ckpt | |
callbacks.run( | |
"on_model_save", last, epoch, final_epoch, best_fitness, fi | |
) | |
# Stop Single-GPU | |
if RANK == -1 and stopper(epoch=epoch, fitness=fi): | |
break | |
# Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576 | |
# stop = stopper(epoch=epoch, fitness=fi) | |
# if RANK == 0: | |
# dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks | |
# Stop DPP | |
# with torch_distributed_zero_first(RANK): | |
# if stop: | |
# break # must break all DDP ranks | |
# end epoch ---------------------------------------------------------------------------------------------------- | |
# end training ----------------------------------------------------------------------------------------------------- | |
if RANK in [-1, 0]: | |
LOGGER.info( | |
f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours." | |
) | |
if not evolve: | |
if is_coco: # COCO dataset | |
for m in ( | |
[last, best] if best.exists() else [last] | |
): # speed, mAP tests | |
results, _, _ = val.run( | |
data_dict, | |
batch_size=batch_size // WORLD_SIZE * 2, | |
imgsz=imgsz, | |
model=attempt_load(m, device).half(), | |
iou_thres=0.7, # NMS IoU threshold for best pycocotools results | |
single_cls=single_cls, | |
dataloader=val_loader, | |
save_dir=save_dir, | |
save_json=True, | |
plots=False, | |
) | |
# Strip optimizers | |
for f in last, best: | |
if f.exists(): | |
strip_optimizer(f) # strip optimizers | |
callbacks.run("on_train_end", last, best, plots, epoch) | |
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") | |
torch.cuda.empty_cache() | |
return results | |
def parse_opt(known=False): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--weights", | |
type=str, | |
default="yolov5s.pt", | |
help="initial weights path", | |
) | |
parser.add_argument("--cfg", type=str, default="", help="model.yaml path") | |
parser.add_argument( | |
"--data", | |
type=str, | |
default="data/coco128.yaml", | |
help="dataset.yaml path", | |
) | |
parser.add_argument( | |
"--hyp", | |
type=str, | |
default="data/hyps/hyp.scratch.yaml", | |
help="hyperparameters path", | |
) | |
parser.add_argument("--epochs", type=int, default=300) | |
parser.add_argument( | |
"--batch-size", | |
type=int, | |
default=16, | |
help="total batch size for all GPUs", | |
) | |
parser.add_argument( | |
"--imgsz", | |
"--img", | |
"--img-size", | |
type=int, | |
default=640, | |
help="train, val image size (pixels)", | |
) | |
parser.add_argument( | |
"--rect", action="store_true", help="rectangular training" | |
) | |
parser.add_argument( | |
"--resume", | |
nargs="?", | |
const=True, | |
default=False, | |
help="resume most recent training", | |
) | |
parser.add_argument( | |
"--nosave", action="store_true", help="only save final checkpoint" | |
) | |
parser.add_argument( | |
"--noval", action="store_true", help="only validate final epoch" | |
) | |
parser.add_argument( | |
"--noautoanchor", action="store_true", help="disable autoanchor check" | |
) | |
parser.add_argument( | |
"--evolve", | |
type=int, | |
nargs="?", | |
const=300, | |
help="evolve hyperparameters for x generations", | |
) | |
parser.add_argument("--bucket", type=str, default="", help="gsutil bucket") | |
parser.add_argument( | |
"--cache", | |
type=str, | |
nargs="?", | |
const="ram", | |
help='--cache images in "ram" (default) or "disk"', | |
) | |
parser.add_argument( | |
"--image-weights", | |
action="store_true", | |
help="use weighted image selection for training", | |
) | |
parser.add_argument( | |
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" | |
) | |
parser.add_argument( | |
"--multi-scale", action="store_true", help="vary img-size +/- 50%%" | |
) | |
parser.add_argument( | |
"--single-cls", | |
action="store_true", | |
help="train multi-class data as single-class", | |
) | |
parser.add_argument( | |
"--adam", action="store_true", help="use torch.optim.Adam() optimizer" | |
) | |
parser.add_argument( | |
"--sync-bn", | |
action="store_true", | |
help="use SyncBatchNorm, only available in DDP mode", | |
) | |
parser.add_argument( | |
"--workers", | |
type=int, | |
default=8, | |
help="maximum number of dataloader workers", | |
) | |
parser.add_argument( | |
"--project", default="runs/train", help="save to project/name" | |
) | |
parser.add_argument("--entity", default=None, help="W&B entity") | |
parser.add_argument("--name", default="exp", help="save to project/name") | |
parser.add_argument( | |
"--exist-ok", | |
action="store_true", | |
help="existing project/name ok, do not increment", | |
) | |
parser.add_argument("--quad", action="store_true", help="quad dataloader") | |
parser.add_argument("--linear-lr", action="store_true", help="linear LR") | |
parser.add_argument( | |
"--label-smoothing", | |
type=float, | |
default=0.0, | |
help="Label smoothing epsilon", | |
) | |
parser.add_argument( | |
"--upload_dataset", | |
action="store_true", | |
help="Upload dataset as W&B artifact table", | |
) | |
parser.add_argument( | |
"--bbox_interval", | |
type=int, | |
default=-1, | |
help="Set bounding-box image logging interval for W&B", | |
) | |
parser.add_argument( | |
"--save_period", | |
type=int, | |
default=-1, | |
help='Log model after every "save_period" epoch', | |
) | |
parser.add_argument( | |
"--artifact_alias", | |
type=str, | |
default="latest", | |
help="version of dataset artifact to be used", | |
) | |
parser.add_argument( | |
"--local_rank", | |
type=int, | |
default=-1, | |
help="DDP parameter, do not modify", | |
) | |
parser.add_argument( | |
"--freeze", | |
type=int, | |
default=0, | |
help="Number of layers to freeze. backbone=10, all=24", | |
) | |
parser.add_argument( | |
"--patience", | |
type=int, | |
default=100, | |
help="EarlyStopping patience (epochs without improvement)", | |
) | |
opt = parser.parse_known_args()[0] if known else parser.parse_args() | |
return opt | |
def main(opt, callbacks=Callbacks()): | |
# Checks | |
set_logging(RANK) | |
if RANK in [-1, 0]: | |
print( | |
colorstr("train: ") | |
+ ", ".join(f"{k}={v}" for k, v in vars(opt).items()) | |
) | |
check_git_status() | |
check_requirements( | |
requirements=FILE.parent / "requirements.txt", exclude=["thop"] | |
) | |
# Resume | |
if ( | |
opt.resume and not check_wandb_resume(opt) and not opt.evolve | |
): # resume an interrupted run | |
ckpt = ( | |
opt.resume if isinstance(opt.resume, str) else get_latest_run() | |
) # specified or most recent path | |
assert os.path.isfile( | |
ckpt | |
), "ERROR: --resume checkpoint does not exist" | |
with open(Path(ckpt).parent.parent / "opt.yaml") as f: | |
opt = argparse.Namespace(**yaml.safe_load(f)) # replace | |
opt.cfg, opt.weights, opt.resume = "", ckpt, True # reinstate | |
LOGGER.info(f"Resuming training from {ckpt}") | |
else: | |
opt.data, opt.cfg, opt.hyp = ( | |
check_file(opt.data), | |
check_yaml(opt.cfg), | |
check_yaml(opt.hyp), | |
) # check YAMLs | |
assert len(opt.cfg) or len( | |
opt.weights | |
), "either --cfg or --weights must be specified" | |
if opt.evolve: | |
opt.project = "runs/evolve" | |
opt.exist_ok = opt.resume | |
opt.save_dir = str( | |
increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) | |
) | |
# DDP mode | |
device = select_device(opt.device, batch_size=opt.batch_size) | |
if LOCAL_RANK != -1: | |
from datetime import timedelta | |
assert ( | |
torch.cuda.device_count() > LOCAL_RANK | |
), "insufficient CUDA devices for DDP command" | |
assert ( | |
opt.batch_size % WORLD_SIZE == 0 | |
), "--batch-size must be multiple of CUDA device count" | |
assert ( | |
not opt.image_weights | |
), "--image-weights argument is not compatible with DDP training" | |
assert ( | |
not opt.evolve | |
), "--evolve argument is not compatible with DDP training" | |
torch.cuda.set_device(LOCAL_RANK) | |
device = torch.device("cuda", LOCAL_RANK) | |
dist.init_process_group( | |
backend="nccl" if dist.is_nccl_available() else "gloo" | |
) | |
# Train | |
if not opt.evolve: | |
train(opt.hyp, opt, device, callbacks) | |
if WORLD_SIZE > 1 and RANK == 0: | |
_ = [ | |
print("Destroying process group... ", end=""), | |
dist.destroy_process_group(), | |
print("Done."), | |
] | |
# Evolve hyperparameters (optional) | |
else: | |
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) | |
meta = { | |
"lr0": ( | |
1, | |
1e-5, | |
1e-1, | |
), # initial learning rate (SGD=1E-2, Adam=1E-3) | |
"lrf": ( | |
1, | |
0.01, | |
1.0, | |
), # final OneCycleLR learning rate (lr0 * lrf) | |
"momentum": (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 | |
"weight_decay": (1, 0.0, 0.001), # optimizer weight decay | |
"warmup_epochs": (1, 0.0, 5.0), # warmup epochs (fractions ok) | |
"warmup_momentum": (1, 0.0, 0.95), # warmup initial momentum | |
"warmup_bias_lr": (1, 0.0, 0.2), # warmup initial bias lr | |
"box": (1, 0.02, 0.2), # box loss gain | |
"cls": (1, 0.2, 4.0), # cls loss gain | |
"cls_pw": (1, 0.5, 2.0), # cls BCELoss positive_weight | |
"obj": (1, 0.2, 4.0), # obj loss gain (scale with pixels) | |
"obj_pw": (1, 0.5, 2.0), # obj BCELoss positive_weight | |
"iou_t": (0, 0.1, 0.7), # IoU training threshold | |
"anchor_t": (1, 2.0, 8.0), # anchor-multiple threshold | |
"anchors": (2, 2.0, 10.0), # anchors per output grid (0 to ignore) | |
"fl_gamma": ( | |
0, | |
0.0, | |
2.0, | |
), # focal loss gamma (efficientDet default gamma=1.5) | |
"hsv_h": (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) | |
"hsv_s": ( | |
1, | |
0.0, | |
0.9, | |
), # image HSV-Saturation augmentation (fraction) | |
"hsv_v": (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) | |
"degrees": (1, 0.0, 45.0), # image rotation (+/- deg) | |
"translate": (1, 0.0, 0.9), # image translation (+/- fraction) | |
"scale": (1, 0.0, 0.9), # image scale (+/- gain) | |
"shear": (1, 0.0, 10.0), # image shear (+/- deg) | |
"perspective": ( | |
0, | |
0.0, | |
0.001, | |
), # image perspective (+/- fraction), range 0-0.001 | |
"flipud": (1, 0.0, 1.0), # image flip up-down (probability) | |
"fliplr": (0, 0.0, 1.0), # image flip left-right (probability) | |
"mosaic": (1, 0.0, 1.0), # image mixup (probability) | |
"mixup": (1, 0.0, 1.0), # image mixup (probability) | |
"copy_paste": (1, 0.0, 1.0), | |
} # segment copy-paste (probability) | |
with open(opt.hyp) as f: | |
hyp = yaml.safe_load(f) # load hyps dict | |
if "anchors" not in hyp: # anchors commented in hyp.yaml | |
hyp["anchors"] = 3 | |
opt.noval, opt.nosave, save_dir = ( | |
True, | |
True, | |
Path(opt.save_dir), | |
) # only val/save final epoch | |
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices | |
evolve_yaml, evolve_csv = ( | |
save_dir / "hyp_evolve.yaml", | |
save_dir / "evolve.csv", | |
) | |
if opt.bucket: | |
os.system( | |
f"gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}" | |
) # download evolve.csv if exists | |
for _ in range(opt.evolve): # generations to evolve | |
if ( | |
evolve_csv.exists() | |
): # if evolve.csv exists: select best hyps and mutate | |
# Select parent(s) | |
parent = ( | |
"single" # parent selection method: 'single' or 'weighted' | |
) | |
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=",", skiprows=1) | |
n = min(5, len(x)) # number of previous results to consider | |
x = x[np.argsort(-fitness(x))][:n] # top n mutations | |
w = fitness(x) - fitness(x).min() + 1e-6 # weights (sum > 0) | |
if parent == "single" or len(x) == 1: | |
# x = x[random.randint(0, n - 1)] # random selection | |
x = x[ | |
random.choices(range(n), weights=w)[0] | |
] # weighted selection | |
elif parent == "weighted": | |
x = (x * w.reshape(n, 1)).sum( | |
0 | |
) / w.sum() # weighted combination | |
# Mutate | |
mp, s = 0.8, 0.2 # mutation probability, sigma | |
npr = np.random | |
npr.seed(int(time.time())) | |
g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1 | |
ng = len(meta) | |
v = np.ones(ng) | |
while all( | |
v == 1 | |
): # mutate until a change occurs (prevent duplicates) | |
v = ( | |
g | |
* (npr.random(ng) < mp) | |
* npr.randn(ng) | |
* npr.random() | |
* s | |
+ 1 | |
).clip(0.3, 3.0) | |
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) | |
hyp[k] = float(x[i + 7] * v[i]) # mutate | |
# Constrain to limits | |
for k, v in meta.items(): | |
hyp[k] = max(hyp[k], v[1]) # lower limit | |
hyp[k] = min(hyp[k], v[2]) # upper limit | |
hyp[k] = round(hyp[k], 5) # significant digits | |
# Train mutation | |
results = train(hyp.copy(), opt, device, callbacks) | |
# Write mutation results | |
print_mutation(results, hyp.copy(), save_dir, opt.bucket) | |
# Plot results | |
plot_evolve(evolve_csv) | |
print( | |
f"Hyperparameter evolution finished\n" | |
f"Results saved to {colorstr('bold', save_dir)}\n" | |
f"Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}" | |
) | |
def run(**kwargs): | |
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') | |
opt = parse_opt(True) | |
for k, v in kwargs.items(): | |
setattr(opt, k, v) | |
main(opt) | |
if __name__ == "__main__": | |
opt = parse_opt() | |
main(opt) | |