Abhilashvj's picture
Upload 250 files
5b2fcab
raw
history blame
12.8 kB
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ python classify/predict.py --weights yolov5s-cls.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ python classify/predict.py --weights yolov5s-cls.pt # PyTorch
yolov5s-cls.torchscript # TorchScript
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s-cls_openvino_model # OpenVINO
yolov5s-cls.engine # TensorRT
yolov5s-cls.mlmodel # CoreML (macOS-only)
yolov5s-cls_saved_model # TensorFlow SavedModel
yolov5s-cls.pb # TensorFlow GraphDef
yolov5s-cls.tflite # TensorFlow Lite
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
yolov5s-cls_paddle_model # PaddlePaddle
"""
import argparse
import os
import platform
import sys
from pathlib import Path
import torch
import torch.nn.functional as F
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.augmentations import classify_transforms
from utils.dataloaders import (
IMG_FORMATS,
VID_FORMATS,
LoadImages,
LoadScreenshots,
LoadStreams,
)
from utils.general import (
LOGGER,
Profile,
check_file,
check_img_size,
check_imshow,
check_requirements,
colorstr,
cv2,
increment_path,
print_args,
strip_optimizer,
)
from utils.plots import Annotator
from utils.torch_utils import select_device, smart_inference_mode
@smart_inference_mode()
def run(
weights=ROOT / "yolov5s-cls.pt", # model.pt path(s)
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
data=ROOT / "data/coco128.yaml", # dataset.yaml path
imgsz=(224, 224), # inference size (height, width)
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
nosave=False, # do not save images/videos
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / "runs/predict-cls", # save results to project/name
name="exp", # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
source = str(source)
save_img = not nosave and not source.endswith(
".txt"
) # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(
("rtsp://", "rtmp://", "http://", "https://")
)
webcam = (
source.isnumeric()
or source.endswith(".streams")
or (is_url and not is_file)
)
screenshot = source.lower().startswith("screen")
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(
Path(project) / name, exist_ok=exist_ok
) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(
parents=True, exist_ok=True
) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(
weights, device=device, dnn=dnn, data=data, fp16=half
)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(
source,
img_size=imgsz,
transforms=classify_transforms(imgsz[0]),
vid_stride=vid_stride,
)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(
source, img_size=imgsz, stride=stride, auto=pt
)
else:
dataset = LoadImages(
source,
img_size=imgsz,
transforms=classify_transforms(imgsz[0]),
vid_stride=vid_stride,
)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.Tensor(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with dt[1]:
results = model(im)
# Post-process
with dt[2]:
pred = F.softmax(results, dim=1) # probabilities
# Process predictions
for i, prob in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f"{i}: "
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / "labels" / p.stem) + (
"" if dataset.mode == "image" else f"_{frame}"
) # im.txt
s += "%gx%g " % im.shape[2:] # print string
annotator = Annotator(im0, example=str(names), pil=True)
# Print results
top5i = prob.argsort(0, descending=True)[
:5
].tolist() # top 5 indices
s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "
# Write results
text = "\n".join(f"{prob[j]:.2f} {names[j]}" for j in top5i)
if save_img or view_img: # Add bbox to image
annotator.text((32, 32), text, txt_color=(255, 255, 255))
if save_txt: # Write to file
with open(f"{txt_path}.txt", "a") as f:
f.write(text + "\n")
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == "Linux" and p not in windows:
windows.append(p)
cv2.namedWindow(
str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO
) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[
i
].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(
Path(save_path).with_suffix(".mp4")
) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(
save_path,
cv2.VideoWriter_fourcc(*"mp4v"),
fps,
(w, h),
)
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms")
# Print results
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
LOGGER.info(
f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}"
% t
)
if save_txt or save_img:
s = (
f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"
if save_txt
else ""
)
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(
weights[0]
) # update model (to fix SourceChangeWarning)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument(
"--weights",
nargs="+",
type=str,
default=ROOT / "yolov5s-cls.pt",
help="model path(s)",
)
parser.add_argument(
"--source",
type=str,
default=ROOT / "data/images",
help="file/dir/URL/glob/screen/0(webcam)",
)
parser.add_argument(
"--data",
type=str,
default=ROOT / "data/coco128.yaml",
help="(optional) dataset.yaml path",
)
parser.add_argument(
"--imgsz",
"--img",
"--img-size",
nargs="+",
type=int,
default=[224],
help="inference size h,w",
)
parser.add_argument(
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument("--view-img", action="store_true", help="show results")
parser.add_argument(
"--save-txt", action="store_true", help="save results to *.txt"
)
parser.add_argument(
"--nosave", action="store_true", help="do not save images/videos"
)
parser.add_argument(
"--augment", action="store_true", help="augmented inference"
)
parser.add_argument(
"--visualize", action="store_true", help="visualize features"
)
parser.add_argument(
"--update", action="store_true", help="update all models"
)
parser.add_argument(
"--project",
default=ROOT / "runs/predict-cls",
help="save results to project/name",
)
parser.add_argument(
"--name", default="exp", help="save results to project/name"
)
parser.add_argument(
"--exist-ok",
action="store_true",
help="existing project/name ok, do not increment",
)
parser.add_argument(
"--half", action="store_true", help="use FP16 half-precision inference"
)
parser.add_argument(
"--dnn", action="store_true", help="use OpenCV DNN for ONNX inference"
)
parser.add_argument(
"--vid-stride", type=int, default=1, help="video frame-rate stride"
)
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=("tensorboard", "thop"))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)