Abhilashvj's picture
Upload 250 files
5b2fcab
raw
history blame
10.1 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..general import xywh2xyxy
from ..loss import FocalLoss, smooth_BCE
from ..metrics import bbox_iou
from ..torch_utils import de_parallel
from .general import crop_mask
class ComputeLoss:
# Compute losses
def __init__(self, model, autobalance=False, overlap=False):
self.sort_obj_iou = False
self.overlap = overlap
device = next(model.parameters()).device # get model device
h = model.hyp # hyperparameters
self.device = device
# Define criteria
BCEcls = nn.BCEWithLogitsLoss(
pos_weight=torch.tensor([h["cls_pw"]], device=device)
)
BCEobj = nn.BCEWithLogitsLoss(
pos_weight=torch.tensor([h["obj_pw"]], device=device)
)
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
self.cp, self.cn = smooth_BCE(
eps=h.get("label_smoothing", 0.0)
) # positive, negative BCE targets
# Focal loss
g = h["fl_gamma"] # focal loss gamma
if g > 0:
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
m = de_parallel(model).model[-1] # Detect() module
self.balance = {3: [4.0, 1.0, 0.4]}.get(
m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]
) # P3-P7
self.ssi = (
list(m.stride).index(16) if autobalance else 0
) # stride 16 index
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = (
BCEcls,
BCEobj,
1.0,
h,
autobalance,
)
self.na = m.na # number of anchors
self.nc = m.nc # number of classes
self.nl = m.nl # number of layers
self.nm = m.nm # number of masks
self.anchors = m.anchors
self.device = device
def __call__(self, preds, targets, masks): # predictions, targets, model
p, proto = preds
(
bs,
nm,
mask_h,
mask_w,
) = proto.shape # batch size, number of masks, mask height, mask width
lcls = torch.zeros(1, device=self.device)
lbox = torch.zeros(1, device=self.device)
lobj = torch.zeros(1, device=self.device)
lseg = torch.zeros(1, device=self.device)
tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(
p, targets
) # targets
# Losses
for i, pi in enumerate(p): # layer index, layer predictions
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
tobj = torch.zeros(
pi.shape[:4], dtype=pi.dtype, device=self.device
) # target obj
n = b.shape[0] # number of targets
if n:
pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split(
(2, 2, 1, self.nc, nm), 1
) # subset of predictions
# Box regression
pxy = pxy.sigmoid() * 2 - 0.5
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
pbox = torch.cat((pxy, pwh), 1) # predicted box
iou = bbox_iou(
pbox, tbox[i], CIoU=True
).squeeze() # iou(prediction, target)
lbox += (1.0 - iou).mean() # iou loss
# Objectness
iou = iou.detach().clamp(0).type(tobj.dtype)
if self.sort_obj_iou:
j = iou.argsort()
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
if self.gr < 1:
iou = (1.0 - self.gr) + self.gr * iou
tobj[b, a, gj, gi] = iou # iou ratio
# Classification
if self.nc > 1: # cls loss (only if multiple classes)
t = torch.full_like(
pcls, self.cn, device=self.device
) # targets
t[range(n), tcls[i]] = self.cp
lcls += self.BCEcls(pcls, t) # BCE
# Mask regression
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
masks = F.interpolate(
masks[None], (mask_h, mask_w), mode="nearest"
)[0]
marea = xywhn[i][:, 2:].prod(
1
) # mask width, height normalized
mxyxy = xywh2xyxy(
xywhn[i]
* torch.tensor(
[mask_w, mask_h, mask_w, mask_h], device=self.device
)
)
for bi in b.unique():
j = b == bi # matching index
if self.overlap:
mask_gti = torch.where(
masks[bi][None] == tidxs[i][j].view(-1, 1, 1),
1.0,
0.0,
)
else:
mask_gti = masks[tidxs[i]][j]
lseg += self.single_mask_loss(
mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j]
)
obji = self.BCEobj(pi[..., 4], tobj)
lobj += obji * self.balance[i] # obj loss
if self.autobalance:
self.balance[i] = (
self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
)
if self.autobalance:
self.balance = [x / self.balance[self.ssi] for x in self.balance]
lbox *= self.hyp["box"]
lobj *= self.hyp["obj"]
lcls *= self.hyp["cls"]
lseg *= self.hyp["box"] / bs
loss = lbox + lobj + lcls + lseg
return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
# Mask loss for one image
pred_mask = (pred @ proto.view(self.nm, -1)).view(
-1, *proto.shape[1:]
) # (n,32) @ (32,80,80) -> (n,80,80)
loss = F.binary_cross_entropy_with_logits(
pred_mask, gt_mask, reduction="none"
)
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
def build_targets(self, p, targets):
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
na, nt = self.na, targets.shape[0] # number of anchors, targets
tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
gain = torch.ones(
8, device=self.device
) # normalized to gridspace gain
ai = (
torch.arange(na, device=self.device)
.float()
.view(na, 1)
.repeat(1, nt)
) # same as .repeat_interleave(nt)
if self.overlap:
batch = p[0].shape[0]
ti = []
for i in range(batch):
num = (
targets[:, 0] == i
).sum() # find number of targets of each image
ti.append(
torch.arange(num, device=self.device)
.float()
.view(1, num)
.repeat(na, 1)
+ 1
) # (na, num)
ti = torch.cat(ti, 1) # (na, nt)
else:
ti = (
torch.arange(nt, device=self.device)
.float()
.view(1, nt)
.repeat(na, 1)
)
targets = torch.cat(
(targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2
) # append anchor indices
g = 0.5 # bias
off = (
torch.tensor(
[
[0, 0],
[1, 0],
[0, 1],
[-1, 0],
[0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
],
device=self.device,
).float()
* g
) # offsets
for i in range(self.nl):
anchors, shape = self.anchors[i], p[i].shape
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
# Match targets to anchors
t = targets * gain # shape(3,n,7)
if nt:
# Matches
r = t[..., 4:6] / anchors[:, None] # wh ratio
j = (
torch.max(r, 1 / r).max(2)[0] < self.hyp["anchor_t"]
) # compare
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
t = t[j] # filter
# Offsets
gxy = t[:, 2:4] # grid xy
gxi = gain[[2, 3]] - gxy # inverse
j, k = ((gxy % 1 < g) & (gxy > 1)).T
l, m = ((gxi % 1 < g) & (gxi > 1)).T
j = torch.stack((torch.ones_like(j), j, k, l, m))
t = t.repeat((5, 1, 1))[j]
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
else:
t = targets[0]
offsets = 0
# Define
bc, gxy, gwh, at = t.chunk(
4, 1
) # (image, class), grid xy, grid wh, anchors
(a, tidx), (b, c) = (
at.long().T,
bc.long().T,
) # anchors, image, class
gij = (gxy - offsets).long()
gi, gj = gij.T # grid indices
# Append
indices.append(
(b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))
) # image, anchor, grid
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
anch.append(anchors[a]) # anchors
tcls.append(c) # class
tidxs.append(tidx)
xywhn.append(
torch.cat((gxy, gwh), 1) / gain[2:6]
) # xywh normalized
return tcls, tbox, indices, anch, tidxs, xywhn