Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from autots import AutoTS | |
import plotly.graph_objects as go | |
# Function to handle forecasting | |
def forecast_queues(data): | |
# Convert the input string to a pandas DataFrame | |
data = pd.read_csv(data) | |
# Ensure the 'date' column is in the correct datetime format | |
data['date'] = pd.to_datetime(data['date'], errors='coerce') | |
# Check for missing values and drop them if necessary | |
data = data.dropna(subset=['date', 'queue_length']) | |
# Setup AutoTS for time-series forecasting | |
model = AutoTS(forecast_length=12, frequency='D', ensemble=True, model_list="all") | |
model = model.fit(data, date_col='date', value_col='queue_length') # Adjust column names as per your CSV | |
# Generate forecast for the next 12 time periods | |
forecast = model.predict() | |
# Get the forecasted values | |
forecast_df = forecast.forecast | |
forecast_values = forecast_df['queue_length'].values.tolist() | |
# Create a Plotly figure to visualize the forecast | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=forecast_df.index, y=forecast_values, mode='lines+markers', name='Forecast')) | |
fig.update_layout(title="Queue Length Forecast", xaxis_title="Date", yaxis_title="Queue Length") | |
return fig | |
# Gradio Interface function | |
def gradio_interface(file): | |
return forecast_queues(file.name) | |
# Define Gradio interface with file input and plot output | |
iface = gr.Interface(fn=gradio_interface, | |
inputs=gr.File(label="Upload your historical queue data (CSV with date and queue_length columns)"), | |
outputs=gr.Plot(), | |
live=True, | |
title="Queue Length Forecasting with AutoTS", | |
description="Upload a CSV file containing historical queue data with a date and queue_length columns, and get a forecast for the next 12 periods.") | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() | |