Forecasting / app.py
Abhilash7's picture
Create app.py
3bd1575 verified
import gradio as gr
import pandas as pd
from autots import AutoTS
import plotly.graph_objects as go
# Function to handle forecasting
def forecast_queues(data):
# Convert the input string to a pandas DataFrame
data = pd.read_csv(data)
# Ensure the 'date' column is in the correct datetime format
data['date'] = pd.to_datetime(data['date'], errors='coerce')
# Check for missing values and drop them if necessary
data = data.dropna(subset=['date', 'queue_length'])
# Setup AutoTS for time-series forecasting
model = AutoTS(forecast_length=12, frequency='D', ensemble=True, model_list="all")
model = model.fit(data, date_col='date', value_col='queue_length') # Adjust column names as per your CSV
# Generate forecast for the next 12 time periods
forecast = model.predict()
# Get the forecasted values
forecast_df = forecast.forecast
forecast_values = forecast_df['queue_length'].values.tolist()
# Create a Plotly figure to visualize the forecast
fig = go.Figure()
fig.add_trace(go.Scatter(x=forecast_df.index, y=forecast_values, mode='lines+markers', name='Forecast'))
fig.update_layout(title="Queue Length Forecast", xaxis_title="Date", yaxis_title="Queue Length")
return fig
# Gradio Interface function
def gradio_interface(file):
return forecast_queues(file.name)
# Define Gradio interface with file input and plot output
iface = gr.Interface(fn=gradio_interface,
inputs=gr.File(label="Upload your historical queue data (CSV with date and queue_length columns)"),
outputs=gr.Plot(),
live=True,
title="Queue Length Forecasting with AutoTS",
description="Upload a CSV file containing historical queue data with a date and queue_length columns, and get a forecast for the next 12 periods.")
# Launch the app
if __name__ == "__main__":
iface.launch()