import gradio as gr import pandas as pd from autots import AutoTS import plotly.graph_objects as go # Function to handle forecasting def forecast_queues(data): # Convert the input string to a pandas DataFrame data = pd.read_csv(data) # Ensure the 'date' column is in the correct datetime format data['date'] = pd.to_datetime(data['date'], errors='coerce') # Check for missing values and drop them if necessary data = data.dropna(subset=['date', 'queue_length']) # Setup AutoTS for time-series forecasting model = AutoTS(forecast_length=12, frequency='D', ensemble=True, model_list="all") model = model.fit(data, date_col='date', value_col='queue_length') # Adjust column names as per your CSV # Generate forecast for the next 12 time periods forecast = model.predict() # Get the forecasted values forecast_df = forecast.forecast forecast_values = forecast_df['queue_length'].values.tolist() # Create a Plotly figure to visualize the forecast fig = go.Figure() fig.add_trace(go.Scatter(x=forecast_df.index, y=forecast_values, mode='lines+markers', name='Forecast')) fig.update_layout(title="Queue Length Forecast", xaxis_title="Date", yaxis_title="Queue Length") return fig # Gradio Interface function def gradio_interface(file): return forecast_queues(file.name) # Define Gradio interface with file input and plot output iface = gr.Interface(fn=gradio_interface, inputs=gr.File(label="Upload your historical queue data (CSV with date and queue_length columns)"), outputs=gr.Plot(), live=True, title="Queue Length Forecasting with AutoTS", description="Upload a CSV file containing historical queue data with a date and queue_length columns, and get a forecast for the next 12 periods.") # Launch the app if __name__ == "__main__": iface.launch()