AXCXEPT commited on
Commit
4bc4dc4
1 Parent(s): 80470a9

UPDATE ARENA

Browse files
Files changed (1) hide show
  1. app.py +124 -26
app.py CHANGED
@@ -1,19 +1,45 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
8
 
 
 
9
 
10
- def respond(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  message,
12
  history: list[tuple[str, str]],
13
  system_message,
14
  max_tokens,
15
  temperature,
16
  top_p,
 
17
  ):
18
  messages = [{"role": "system", "content": system_message}]
19
 
@@ -27,38 +53,110 @@ def respond(
27
 
28
  response = ""
29
 
30
- for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
33
  stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
 
 
 
 
 
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from collections import defaultdict, Counter
4
+ import random
5
+ import threading
6
+ import time
7
+ import os
8
 
9
+ # 比較するLLMのリストを定義
10
+ llm_list = [
11
+ "HuggingFaceH4/zephyr-7b-beta",
12
+ "AXCXEPT/EZO-Common-9B-gemma-2-it",
13
+ # "モデル名1",
14
+ # "モデル名2",
15
+ ]
16
 
17
+ # 各LLMの出現回数を管理
18
+ llm_counts = defaultdict(int)
19
 
20
+ # 各LLMのInferenceClientを作成
21
+ clients = {llm: InferenceClient(llm) for llm in llm_list}
22
+
23
+ # LLMを等しくランダムに選択する関数
24
+ def select_llms():
25
+ min_count = min(llm_counts.values()) if llm_counts else 0
26
+ candidates = [llm for llm in llm_list if llm_counts[llm] == min_count]
27
+ if len(candidates) < 2:
28
+ candidates = llm_list
29
+ selected_llms = random.sample(candidates, 2)
30
+ for llm in selected_llms:
31
+ llm_counts[llm] += 1
32
+ return selected_llms
33
+
34
+ # 各LLMに対する応答を生成する関数
35
+ def respond_llm(
36
  message,
37
  history: list[tuple[str, str]],
38
  system_message,
39
  max_tokens,
40
  temperature,
41
  top_p,
42
+ llm_client,
43
  ):
44
  messages = [{"role": "system", "content": system_message}]
45
 
 
53
 
54
  response = ""
55
 
56
+ for message in llm_client.chat_completion(
57
  messages,
58
  max_tokens=max_tokens,
59
  stream=True,
60
  temperature=temperature,
61
  top_p=top_p,
62
  ):
63
+ token = message.choices[0].delta.get("content", "")
 
64
  response += token
65
  yield response
66
 
67
+ # 投票結果を保存するファイルのパス
68
+ VOTE_FILE = "votes.txt"
69
+
70
+ # 投票結果を保存する関数
71
+ def save_vote(selected_llm):
72
+ # 投票結果をファイルに保存
73
+ with open(VOTE_FILE, "a") as f:
74
+ f.write(f"{selected_llm}\n")
75
+ return gr.update(visible=True, value="投票ありがとうございました!")
76
+
77
+ # リーダーボードを更新する関数
78
+ def update_leaderboard():
79
+ try:
80
+ with open(VOTE_FILE, "r") as f:
81
+ votes = f.readlines()
82
+ vote_counts = Counter(vote.strip() for vote in votes)
83
+ leaderboard = sorted(vote_counts.items(), key=lambda x: x[1], reverse=True)
84
+ leaderboard_text = "## リーダーボード\n\n"
85
+ for llm, count in leaderboard:
86
+ leaderboard_text += f"- {llm}: {count}票\n"
87
+ except FileNotFoundError:
88
+ leaderboard_text = "まだ投票がありません。"
89
+ return leaderboard_text
90
+
91
+ # Gradioインターフェースの構築
92
+ def chat_interface():
93
+ llm1, llm2 = select_llms()
94
+ client1 = clients[llm1]
95
+ client2 = clients[llm2]
96
+
97
+ with gr.Blocks() as demo:
98
+ gr.Markdown("## LLM比較アリーナ")
99
+
100
+ with gr.Row():
101
+ gr.Markdown(f"### LLM1: {llm1}")
102
+ gr.Markdown(f"### LLM2: {llm2}")
103
 
104
+ with gr.Row():
105
+ with gr.Column():
106
+ chat1 = gr.ChatInterface(
107
+ lambda message, history, system_message, max_tokens, temperature, top_p:
108
+ respond_llm(message, history, system_message, max_tokens, temperature, top_p, client1),
109
+ additional_inputs=[
110
+ gr.Textbox(value="あなたはフレンドリーなチャットボットです。", label="システムメッセージ"),
111
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="最大トークン数"),
112
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"),
113
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="トップP"),
114
+ ],
115
+ )
116
+ with gr.Column():
117
+ chat2 = gr.ChatInterface(
118
+ lambda message, history, system_message, max_tokens, temperature, top_p:
119
+ respond_llm(message, history, system_message, max_tokens, temperature, top_p, client2),
120
+ additional_inputs=[
121
+ gr.Textbox(value="あなたはフレンドリーなチ��ットボットです。", label="システムメッセージ"),
122
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="最大トークン数"),
123
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="温度"),
124
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="トップP"),
125
+ ],
126
+ )
127
 
128
+ # 投票セクション
129
+ with gr.Row():
130
+ vote = gr.Radio([llm1, llm2], label="どちらの応答が良かったですか?")
131
+ submit = gr.Button("投票")
132
+ result = gr.Textbox(label="", visible=False)
133
+
134
+ submit.click(save_vote, inputs=vote, outputs=result)
135
+
136
+ # リーダーボードの表示
137
+ leaderboard = gr.Markdown(update_leaderboard())
138
+
139
+ return demo
140
+
141
+ # リーダーボードを定期的に更新するスレッド
142
+ def refresh_leaderboard(leaderboard_component):
143
+ while True:
144
+ leaderboard_text = update_leaderboard()
145
+ leaderboard_component.value = leaderboard_text
146
+ time.sleep(60) # 60秒ごとに更新
147
 
148
  if __name__ == "__main__":
149
+ demo = chat_interface()
150
+
151
+ # リーダーボードコンポーネントを取得
152
+ leaderboard_component = None
153
+ for component in demo.blocks:
154
+ if isinstance(component, gr.Markdown) and "リーダーボード" in component.value:
155
+ leaderboard_component = component
156
+ break
157
+
158
+ # リーダーボード更新スレッドの開始
159
+ if leaderboard_component:
160
+ threading.Thread(target=refresh_leaderboard, args=(leaderboard_component,), daemon=True).start()
161
+
162
  demo.launch()