AP123 commited on
Commit
37a9a0b
1 Parent(s): e8f9bdd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -14
app.py CHANGED
@@ -285,9 +285,24 @@ def call(
285
 
286
  return StableDiffusionXLPipelineOutput(images=image)
287
 
288
- def simple_call(prompt1, prompt2, guidance_scale1, guidance_scale2, negative_prompt1, negative_prompt2):
 
 
289
  generator = [torch.Generator(device="cuda").manual_seed(5)]
290
- res = call(pipe, prompt1, prompt2, width=768, height=768, num_images_per_prompt=1, num_inference_steps=50, guidance_scale=guidance_scale1, guidance_scale2=guidance_scale2, negative_prompt=negative_prompt1, negative_prompt2=negative_prompt2, generator=generator)
 
 
 
 
 
 
 
 
 
 
 
 
 
291
  image1 = res.images[0]
292
  image2 = ImageOps.exif_transpose(image1.rotate(180, resample=0))
293
  return image1, image2
@@ -295,25 +310,27 @@ def simple_call(prompt1, prompt2, guidance_scale1, guidance_scale2, negative_pro
295
  with gr.Blocks() as app:
296
  gr.Markdown(
297
  '''
298
- <center><h1>Upside Down Diffusion</h1></span>
299
- Placeholder
 
 
300
  </center>
 
 
 
 
 
 
 
301
  '''
302
  )
 
303
 
304
  with gr.Row():
305
  with gr.Column():
306
  prompt1 = gr.Textbox(label="Prompt 1")
307
  prompt2 = gr.Textbox(label="Prompt 2")
308
- negative_prompt1 = gr.Textbox(label="Negative Prompt 1")
309
- negative_prompt2 = gr.Textbox(label="Negative Prompt 2")
310
- guidance_scale1 = gr.Slider(minimum=0, maximum=10, step=0.1, label="Guidance Scale 1")
311
- guidance_scale2 = gr.Slider(minimum=0, maximum=10, step=0.1, label="Guidance Scale 2")
312
  run_btn = gr.Button("Run")
313
-
314
- with gr.Accordion(label="Advanced Options", open=False):
315
- # You can place additional sliders or options here
316
- pass
317
 
318
  with gr.Column():
319
  result_image1 = gr.Image(label="Output 1")
@@ -321,11 +338,11 @@ with gr.Blocks() as app:
321
 
322
  run_btn.click(
323
  simple_call,
324
- inputs=[prompt1, prompt2, guidance_scale1, guidance_scale2, negative_prompt1, negative_prompt2],
325
  outputs=[result_image1, result_image2]
326
  )
327
 
328
  app.queue(max_size=20)
329
 
330
  if __name__ == "__main__":
331
- app.launch(debug=True)
 
285
 
286
  return StableDiffusionXLPipelineOutput(images=image)
287
 
288
+ NEGATIVE_PROMPTS = "text, watermark, low-quality, signature, moiré pattern, downsampling, aliasing, distorted, blurry, glossy, blur, jpeg artifacts, compression artifacts, poorly drawn, low-resolution, bad, distortion, twisted, excessive, exaggerated pose, exaggerated limbs, grainy, symmetrical, duplicate, error, pattern, beginner, pixelated, fake, hyper, glitch, overexposed, high-contrast, bad-contrast"
289
+
290
+ def simple_call(prompt1, prompt2):
291
  generator = [torch.Generator(device="cuda").manual_seed(5)]
292
+ res = call(
293
+ pipe,
294
+ prompt1,
295
+ prompt2,
296
+ width=768,
297
+ height=768,
298
+ num_images_per_prompt=1,
299
+ num_inference_steps=50,
300
+ guidance_scale=5.0,
301
+ guidance_scale2=8.0,
302
+ negative_prompt=NEGATIVE_PROMPTS,
303
+ negative_prompt2=NEGATIVE_PROMPTS,
304
+ generator=generator
305
+ )
306
  image1 = res.images[0]
307
  image2 = ImageOps.exif_transpose(image1.rotate(180, resample=0))
308
  return image1, image2
 
310
  with gr.Blocks() as app:
311
  gr.Markdown(
312
  '''
313
+ <center>
314
+ <h1>Upside Down Diffusion</h1>
315
+ <p>Code by Alex Carlier, please follow them on <a href="https://twitter.com/alexcarliera">Twitter</a></p>
316
+ <p>A space by <a href="https://twitter.com/angrypenguinPNG">AP</a></p>
317
  </center>
318
+ <hr>
319
+ <p>
320
+ 🌟 <strong>Unleash the Magic of Optical Illusions with Stable Diffusion!</strong> 🌟
321
+ </p>
322
+ <p>
323
+ Enter your first prompt to craft an image when upright. Then, inject a second prompt to reveal a mesmerizing surprise when you flip the image upside down! Prepare to be mesmerized! ✨
324
+ </p>
325
  '''
326
  )
327
+
328
 
329
  with gr.Row():
330
  with gr.Column():
331
  prompt1 = gr.Textbox(label="Prompt 1")
332
  prompt2 = gr.Textbox(label="Prompt 2")
 
 
 
 
333
  run_btn = gr.Button("Run")
 
 
 
 
334
 
335
  with gr.Column():
336
  result_image1 = gr.Image(label="Output 1")
 
338
 
339
  run_btn.click(
340
  simple_call,
341
+ inputs=[prompt1, prompt2],
342
  outputs=[result_image1, result_image2]
343
  )
344
 
345
  app.queue(max_size=20)
346
 
347
  if __name__ == "__main__":
348
+ app.launch(debug=True)