Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -15,55 +15,275 @@ pipe.to("cuda")
|
|
15 |
|
16 |
@torch.no_grad()
|
17 |
def call(
|
18 |
-
pipe,
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def simple_call(prompt1, prompt2, guidance_scale1, guidance_scale2, negative_prompt1, negative_prompt2):
|
69 |
generator = [torch.Generator(device="cuda").manual_seed(5)]
|
|
|
15 |
|
16 |
@torch.no_grad()
|
17 |
def call(
|
18 |
+
pipe,
|
19 |
+
prompt: Union[str, List[str]] = None,
|
20 |
+
prompt2: Union[str, List[str]] = None,
|
21 |
+
height: Optional[int] = None,
|
22 |
+
width: Optional[int] = None,
|
23 |
+
num_inference_steps: int = 50,
|
24 |
+
denoising_end: Optional[float] = None,
|
25 |
+
guidance_scale: float = 5.0,
|
26 |
+
guidance_scale2: float = 5.0,
|
27 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
28 |
+
negative_prompt2: Optional[Union[str, List[str]]] = None,
|
29 |
+
num_images_per_prompt: Optional[int] = 1,
|
30 |
+
eta: float = 0.0,
|
31 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
32 |
+
latents: Optional[torch.FloatTensor] = None,
|
33 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
34 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
35 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
36 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
37 |
+
output_type: Optional[str] = "pil",
|
38 |
+
return_dict: bool = True,
|
39 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
40 |
+
callback_steps: int = 1,
|
41 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
42 |
+
guidance_rescale: float = 0.0,
|
43 |
+
original_size: Optional[Tuple[int, int]] = None,
|
44 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
45 |
+
target_size: Optional[Tuple[int, int]] = None,
|
46 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
47 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
48 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
49 |
+
):
|
50 |
+
# 0. Default height and width to unet
|
51 |
+
height = height or pipe.default_sample_size * pipe.vae_scale_factor
|
52 |
+
width = width or pipe.default_sample_size * pipe.vae_scale_factor
|
53 |
+
|
54 |
+
original_size = original_size or (height, width)
|
55 |
+
target_size = target_size or (height, width)
|
56 |
+
|
57 |
+
# 1. Check inputs. Raise error if not correct
|
58 |
+
pipe.check_inputs(
|
59 |
+
prompt,
|
60 |
+
None,
|
61 |
+
height,
|
62 |
+
width,
|
63 |
+
callback_steps,
|
64 |
+
negative_prompt,
|
65 |
+
None,
|
66 |
+
prompt_embeds,
|
67 |
+
negative_prompt_embeds,
|
68 |
+
pooled_prompt_embeds,
|
69 |
+
negative_pooled_prompt_embeds,
|
70 |
+
)
|
71 |
+
|
72 |
+
# 2. Define call parameters
|
73 |
+
if prompt is not None and isinstance(prompt, str):
|
74 |
+
batch_size = 1
|
75 |
+
elif prompt is not None and isinstance(prompt, list):
|
76 |
+
batch_size = len(prompt)
|
77 |
+
else:
|
78 |
+
batch_size = prompt_embeds.shape[0]
|
79 |
+
|
80 |
+
device = pipe._execution_device
|
81 |
+
|
82 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
83 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
84 |
+
# corresponds to doing no classifier free guidance.
|
85 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
86 |
+
|
87 |
+
# 3. Encode input prompt
|
88 |
+
text_encoder_lora_scale = (
|
89 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
90 |
+
)
|
91 |
+
|
92 |
+
(
|
93 |
+
prompt_embeds,
|
94 |
+
negative_prompt_embeds,
|
95 |
+
pooled_prompt_embeds,
|
96 |
+
negative_pooled_prompt_embeds,
|
97 |
+
) = pipe.encode_prompt(
|
98 |
+
prompt=prompt,
|
99 |
+
device=device,
|
100 |
+
num_images_per_prompt=num_images_per_prompt,
|
101 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
102 |
+
negative_prompt=negative_prompt,
|
103 |
+
prompt_embeds=None,
|
104 |
+
negative_prompt_embeds=None,
|
105 |
+
pooled_prompt_embeds=None,
|
106 |
+
negative_pooled_prompt_embeds=None,
|
107 |
+
lora_scale=text_encoder_lora_scale,
|
108 |
+
)
|
109 |
+
|
110 |
+
(
|
111 |
+
prompt2_embeds,
|
112 |
+
negative_prompt2_embeds,
|
113 |
+
pooled_prompt2_embeds,
|
114 |
+
negative_pooled_prompt2_embeds,
|
115 |
+
) = pipe.encode_prompt(
|
116 |
+
prompt=prompt2,
|
117 |
+
device=device,
|
118 |
+
num_images_per_prompt=num_images_per_prompt,
|
119 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
120 |
+
negative_prompt=negative_prompt2,
|
121 |
+
prompt_embeds=None,
|
122 |
+
negative_prompt_embeds=None,
|
123 |
+
pooled_prompt_embeds=None,
|
124 |
+
negative_pooled_prompt_embeds=None,
|
125 |
+
lora_scale=text_encoder_lora_scale,
|
126 |
+
)
|
127 |
+
|
128 |
+
# 4. Prepare timesteps
|
129 |
+
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
|
130 |
+
|
131 |
+
timesteps = pipe.scheduler.timesteps
|
132 |
+
|
133 |
+
# 5. Prepare latent variables
|
134 |
+
num_channels_latents = pipe.unet.config.in_channels
|
135 |
+
latents = pipe.prepare_latents(
|
136 |
+
batch_size * num_images_per_prompt,
|
137 |
+
num_channels_latents,
|
138 |
+
height,
|
139 |
+
width,
|
140 |
+
prompt_embeds.dtype,
|
141 |
+
device,
|
142 |
+
generator,
|
143 |
+
latents,
|
144 |
+
)
|
145 |
+
|
146 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
147 |
+
extra_step_kwargs = pipe.prepare_extra_step_kwargs(generator, eta)
|
148 |
+
|
149 |
+
# 7. Prepare added time ids & embeddings
|
150 |
+
add_text_embeds = pooled_prompt_embeds
|
151 |
+
add_text2_embeds = pooled_prompt2_embeds
|
152 |
+
|
153 |
+
add_time_ids = pipe._get_add_time_ids(
|
154 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
155 |
+
)
|
156 |
+
add_time2_ids = pipe._get_add_time_ids(
|
157 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt2_embeds.dtype
|
158 |
+
)
|
159 |
+
|
160 |
+
if negative_original_size is not None and negative_target_size is not None:
|
161 |
+
negative_add_time_ids = pipe._get_add_time_ids(
|
162 |
+
negative_original_size,
|
163 |
+
negative_crops_coords_top_left,
|
164 |
+
negative_target_size,
|
165 |
+
dtype=prompt_embeds.dtype,
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
negative_add_time_ids = add_time_ids
|
169 |
+
negative_add_time2_ids = add_time2_ids
|
170 |
+
|
171 |
+
if do_classifier_free_guidance:
|
172 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
173 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
174 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
175 |
+
|
176 |
+
prompt2_embeds = torch.cat([negative_prompt2_embeds, prompt2_embeds], dim=0)
|
177 |
+
add_text2_embeds = torch.cat([negative_pooled_prompt2_embeds, add_text2_embeds], dim=0)
|
178 |
+
add_time2_ids = torch.cat([negative_add_time2_ids, add_time2_ids], dim=0)
|
179 |
+
|
180 |
+
prompt_embeds = prompt_embeds.to(device)
|
181 |
+
add_text_embeds = add_text_embeds.to(device)
|
182 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
183 |
+
|
184 |
+
prompt2_embeds = prompt2_embeds.to(device)
|
185 |
+
add_text2_embeds = add_text2_embeds.to(device)
|
186 |
+
add_time2_ids = add_time2_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
187 |
+
|
188 |
+
# 8. Denoising loop
|
189 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * pipe.scheduler.order, 0)
|
190 |
+
|
191 |
+
# 7.1 Apply denoising_end
|
192 |
+
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
|
193 |
+
discrete_timestep_cutoff = int(
|
194 |
+
round(
|
195 |
+
pipe.scheduler.config.num_train_timesteps
|
196 |
+
- (denoising_end * pipe.scheduler.config.num_train_timesteps)
|
197 |
+
)
|
198 |
+
)
|
199 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
200 |
+
timesteps = timesteps[:num_inference_steps]
|
201 |
+
|
202 |
+
with pipe.progress_bar(total=num_inference_steps) as progress_bar:
|
203 |
+
for i, t in enumerate(timesteps):
|
204 |
+
if i % 2 == 0:
|
205 |
+
# expand the latents if we are doing classifier free guidance
|
206 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
207 |
+
|
208 |
+
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
|
209 |
+
|
210 |
+
# predict the noise residual
|
211 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
212 |
+
noise_pred = pipe.unet(
|
213 |
+
latent_model_input,
|
214 |
+
t,
|
215 |
+
encoder_hidden_states=prompt_embeds,
|
216 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
217 |
+
added_cond_kwargs=added_cond_kwargs,
|
218 |
+
return_dict=False,
|
219 |
+
)[0]
|
220 |
+
|
221 |
+
# perform guidance
|
222 |
+
if do_classifier_free_guidance:
|
223 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
224 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
225 |
+
else:
|
226 |
+
# expand the latents if we are doing classifier free guidance
|
227 |
+
latent_model_input2 = torch.cat([latents.flip(2)] * 2) if do_classifier_free_guidance else latents
|
228 |
+
latent_model_input2 = pipe.scheduler.scale_model_input(latent_model_input2, t)
|
229 |
+
|
230 |
+
# predict the noise residual
|
231 |
+
added_cond2_kwargs = {"text_embeds": add_text2_embeds, "time_ids": add_time2_ids}
|
232 |
+
noise_pred2 = pipe.unet(
|
233 |
+
latent_model_input2,
|
234 |
+
t,
|
235 |
+
encoder_hidden_states=prompt2_embeds,
|
236 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
237 |
+
added_cond_kwargs=added_cond2_kwargs,
|
238 |
+
return_dict=False,
|
239 |
+
)[0]
|
240 |
+
|
241 |
+
# perform guidance
|
242 |
+
if do_classifier_free_guidance:
|
243 |
+
noise_pred2_uncond, noise_pred2_text = noise_pred2.chunk(2)
|
244 |
+
noise_pred2 = noise_pred2_uncond + guidance_scale2 * (noise_pred2_text - noise_pred2_uncond)
|
245 |
+
|
246 |
+
noise_pred = noise_pred if i % 2 == 0 else noise_pred2.flip(2)
|
247 |
+
|
248 |
+
# compute the previous noisy sample x_t -> x_t-1
|
249 |
+
latents = pipe.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
250 |
+
|
251 |
+
# call the callback, if provided
|
252 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0):
|
253 |
+
progress_bar.update()
|
254 |
+
if callback is not None and i % callback_steps == 0:
|
255 |
+
callback(i, t, latents)
|
256 |
+
|
257 |
+
if not output_type == "latent":
|
258 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
259 |
+
needs_upcasting = pipe.vae.dtype == torch.float16 and pipe.vae.config.force_upcast
|
260 |
+
|
261 |
+
if needs_upcasting:
|
262 |
+
pipe.upcast_vae()
|
263 |
+
latents = latents.to(next(iter(pipe.vae.post_quant_conv.parameters())).dtype)
|
264 |
+
|
265 |
+
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
|
266 |
+
|
267 |
+
# cast back to fp16 if needed
|
268 |
+
if needs_upcasting:
|
269 |
+
pipe.vae.to(dtype=torch.float16)
|
270 |
+
else:
|
271 |
+
image = latents
|
272 |
+
|
273 |
+
if not output_type == "latent":
|
274 |
+
# apply watermark if available
|
275 |
+
if pipe.watermark is not None:
|
276 |
+
image = pipe.watermark.apply_watermark(image)
|
277 |
+
|
278 |
+
image = pipe.image_processor.postprocess(image, output_type=output_type)
|
279 |
+
|
280 |
+
# Offload all models
|
281 |
+
pipe.maybe_free_model_hooks()
|
282 |
+
|
283 |
+
if not return_dict:
|
284 |
+
return (image,)
|
285 |
+
|
286 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
287 |
|
288 |
def simple_call(prompt1, prompt2, guidance_scale1, guidance_scale2, negative_prompt1, negative_prompt2):
|
289 |
generator = [torch.Generator(device="cuda").manual_seed(5)]
|