Spaces:
Runtime error
Runtime error
| from wan.modules.attention import attention | |
| from wan.modules.model import ( | |
| WanRMSNorm, | |
| rope_apply, | |
| WanLayerNorm, | |
| WAN_CROSSATTENTION_CLASSES, | |
| rope_params, | |
| MLPProj, | |
| sinusoidal_embedding_1d | |
| ) | |
| from torch.nn.attention.flex_attention import create_block_mask, flex_attention | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from torch.nn.attention.flex_attention import BlockMask | |
| from diffusers.models.modeling_utils import ModelMixin | |
| import torch.nn as nn | |
| import torch | |
| import math | |
| import torch.distributed as dist | |
| # wan 1.3B model has a weird channel / head configurations and require max-autotune to work with flexattention | |
| # see https://github.com/pytorch/pytorch/issues/133254 | |
| # change to default for other models | |
| flex_attention = torch.compile( | |
| flex_attention, dynamic=False, mode="max-autotune-no-cudagraphs") | |
| def causal_rope_apply(x, grid_sizes, freqs, start_frame=0): | |
| n, c = x.size(2), x.size(3) // 2 | |
| # split freqs | |
| freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
| # loop over samples | |
| output = [] | |
| for i, (f, h, w) in enumerate(grid_sizes.tolist()): | |
| seq_len = f * h * w | |
| # precompute multipliers | |
| x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape( | |
| seq_len, n, -1, 2)) | |
| freqs_i = torch.cat([ | |
| freqs[0][start_frame:start_frame + f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
| freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
| freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
| ], | |
| dim=-1).reshape(seq_len, 1, -1) | |
| # apply rotary embedding | |
| x_i = torch.view_as_real(x_i * freqs_i).flatten(2) | |
| x_i = torch.cat([x_i, x[i, seq_len:]]) | |
| # append to collection | |
| output.append(x_i) | |
| return torch.stack(output).type_as(x) | |
| class CausalWanSelfAttention(nn.Module): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| local_attn_size=-1, | |
| sink_size=0, | |
| qk_norm=True, | |
| eps=1e-6): | |
| assert dim % num_heads == 0 | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.local_attn_size = local_attn_size | |
| self.sink_size = sink_size | |
| self.qk_norm = qk_norm | |
| self.eps = eps | |
| self.max_attention_size = 32760 if local_attn_size == -1 else local_attn_size * 1560 | |
| # layers | |
| self.q = nn.Linear(dim, dim) | |
| self.k = nn.Linear(dim, dim) | |
| self.v = nn.Linear(dim, dim) | |
| self.o = nn.Linear(dim, dim) | |
| self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| def forward( | |
| self, | |
| x, | |
| seq_lens, | |
| grid_sizes, | |
| freqs, | |
| block_mask, | |
| kv_cache=None, | |
| current_start=0, | |
| cache_start=None | |
| ): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, num_heads, C / num_heads] | |
| seq_lens(Tensor): Shape [B] | |
| grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| block_mask (BlockMask) | |
| """ | |
| b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
| if cache_start is None: | |
| cache_start = current_start | |
| # query, key, value function | |
| def qkv_fn(x): | |
| q = self.norm_q(self.q(x)).view(b, s, n, d) | |
| k = self.norm_k(self.k(x)).view(b, s, n, d) | |
| v = self.v(x).view(b, s, n, d) | |
| return q, k, v | |
| q, k, v = qkv_fn(x) | |
| if kv_cache is None: | |
| # if it is teacher forcing training? | |
| is_tf = (s == seq_lens[0].item() * 2) | |
| if is_tf: | |
| q_chunk = torch.chunk(q, 2, dim=1) | |
| k_chunk = torch.chunk(k, 2, dim=1) | |
| roped_query = [] | |
| roped_key = [] | |
| # rope should be same for clean and noisy parts | |
| for ii in range(2): | |
| rq = rope_apply(q_chunk[ii], grid_sizes, freqs).type_as(v) | |
| rk = rope_apply(k_chunk[ii], grid_sizes, freqs).type_as(v) | |
| roped_query.append(rq) | |
| roped_key.append(rk) | |
| roped_query = torch.cat(roped_query, dim=1) | |
| roped_key = torch.cat(roped_key, dim=1) | |
| padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1] | |
| padded_roped_query = torch.cat( | |
| [roped_query, | |
| torch.zeros([q.shape[0], padded_length, q.shape[2], q.shape[3]], | |
| device=q.device, dtype=v.dtype)], | |
| dim=1 | |
| ) | |
| padded_roped_key = torch.cat( | |
| [roped_key, torch.zeros([k.shape[0], padded_length, k.shape[2], k.shape[3]], | |
| device=k.device, dtype=v.dtype)], | |
| dim=1 | |
| ) | |
| padded_v = torch.cat( | |
| [v, torch.zeros([v.shape[0], padded_length, v.shape[2], v.shape[3]], | |
| device=v.device, dtype=v.dtype)], | |
| dim=1 | |
| ) | |
| x = flex_attention( | |
| query=padded_roped_query.transpose(2, 1), | |
| key=padded_roped_key.transpose(2, 1), | |
| value=padded_v.transpose(2, 1), | |
| block_mask=block_mask | |
| )[:, :, :-padded_length].transpose(2, 1) | |
| else: | |
| roped_query = rope_apply(q, grid_sizes, freqs).type_as(v) | |
| roped_key = rope_apply(k, grid_sizes, freqs).type_as(v) | |
| padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1] | |
| padded_roped_query = torch.cat( | |
| [roped_query, | |
| torch.zeros([q.shape[0], padded_length, q.shape[2], q.shape[3]], | |
| device=q.device, dtype=v.dtype)], | |
| dim=1 | |
| ) | |
| padded_roped_key = torch.cat( | |
| [roped_key, torch.zeros([k.shape[0], padded_length, k.shape[2], k.shape[3]], | |
| device=k.device, dtype=v.dtype)], | |
| dim=1 | |
| ) | |
| padded_v = torch.cat( | |
| [v, torch.zeros([v.shape[0], padded_length, v.shape[2], v.shape[3]], | |
| device=v.device, dtype=v.dtype)], | |
| dim=1 | |
| ) | |
| x = flex_attention( | |
| query=padded_roped_query.transpose(2, 1), | |
| key=padded_roped_key.transpose(2, 1), | |
| value=padded_v.transpose(2, 1), | |
| block_mask=block_mask | |
| )[:, :, :-padded_length].transpose(2, 1) | |
| else: | |
| frame_seqlen = math.prod(grid_sizes[0][1:]).item() | |
| current_start_frame = current_start // frame_seqlen | |
| roped_query = causal_rope_apply( | |
| q, grid_sizes, freqs, start_frame=current_start_frame).type_as(v) | |
| roped_key = causal_rope_apply( | |
| k, grid_sizes, freqs, start_frame=current_start_frame).type_as(v) | |
| current_end = current_start + roped_query.shape[1] | |
| sink_tokens = self.sink_size * frame_seqlen | |
| # If we are using local attention and the current KV cache size is larger than the local attention size, we need to truncate the KV cache | |
| kv_cache_size = kv_cache["k"].shape[1] | |
| num_new_tokens = roped_query.shape[1] | |
| if self.local_attn_size != -1 and (current_end > kv_cache["global_end_index"].item()) and ( | |
| num_new_tokens + kv_cache["local_end_index"].item() > kv_cache_size): | |
| # Calculate the number of new tokens added in this step | |
| # Shift existing cache content left to discard oldest tokens | |
| # Clone the source slice to avoid overlapping memory error | |
| num_evicted_tokens = num_new_tokens + kv_cache["local_end_index"].item() - kv_cache_size | |
| num_rolled_tokens = kv_cache["local_end_index"].item() - num_evicted_tokens - sink_tokens | |
| kv_cache["k"][:, sink_tokens:sink_tokens + num_rolled_tokens] = \ | |
| kv_cache["k"][:, sink_tokens + num_evicted_tokens:sink_tokens + num_evicted_tokens + num_rolled_tokens].clone() | |
| kv_cache["v"][:, sink_tokens:sink_tokens + num_rolled_tokens] = \ | |
| kv_cache["v"][:, sink_tokens + num_evicted_tokens:sink_tokens + num_evicted_tokens + num_rolled_tokens].clone() | |
| # Insert the new keys/values at the end | |
| local_end_index = kv_cache["local_end_index"].item() + current_end - \ | |
| kv_cache["global_end_index"].item() - num_evicted_tokens | |
| local_start_index = local_end_index - num_new_tokens | |
| kv_cache["k"][:, local_start_index:local_end_index] = roped_key | |
| kv_cache["v"][:, local_start_index:local_end_index] = v | |
| else: | |
| # Assign new keys/values directly up to current_end | |
| local_end_index = kv_cache["local_end_index"].item() + current_end - kv_cache["global_end_index"].item() | |
| local_start_index = local_end_index - num_new_tokens | |
| kv_cache["k"][:, local_start_index:local_end_index] = roped_key | |
| kv_cache["v"][:, local_start_index:local_end_index] = v | |
| x = attention( | |
| roped_query, | |
| kv_cache["k"][:, max(0, local_end_index - self.max_attention_size):local_end_index], | |
| kv_cache["v"][:, max(0, local_end_index - self.max_attention_size):local_end_index] | |
| ) | |
| kv_cache["global_end_index"].fill_(current_end) | |
| kv_cache["local_end_index"].fill_(local_end_index) | |
| # output | |
| x = x.flatten(2) | |
| x = self.o(x) | |
| return x | |
| class CausalWanAttentionBlock(nn.Module): | |
| def __init__(self, | |
| cross_attn_type, | |
| dim, | |
| ffn_dim, | |
| num_heads, | |
| local_attn_size=-1, | |
| sink_size=0, | |
| qk_norm=True, | |
| cross_attn_norm=False, | |
| eps=1e-6): | |
| super().__init__() | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.num_heads = num_heads | |
| self.local_attn_size = local_attn_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| # layers | |
| self.norm1 = WanLayerNorm(dim, eps) | |
| self.self_attn = CausalWanSelfAttention(dim, num_heads, local_attn_size, sink_size, qk_norm, eps) | |
| self.norm3 = WanLayerNorm( | |
| dim, eps, | |
| elementwise_affine=True) if cross_attn_norm else nn.Identity() | |
| self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, | |
| num_heads, | |
| (-1, -1), | |
| qk_norm, | |
| eps) | |
| self.norm2 = WanLayerNorm(dim, eps) | |
| self.ffn = nn.Sequential( | |
| nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'), | |
| nn.Linear(ffn_dim, dim)) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) | |
| def forward( | |
| self, | |
| x, | |
| e, | |
| seq_lens, | |
| grid_sizes, | |
| freqs, | |
| context, | |
| context_lens, | |
| block_mask, | |
| kv_cache=None, | |
| crossattn_cache=None, | |
| current_start=0, | |
| cache_start=None | |
| ): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| e(Tensor): Shape [B, F, 6, C] | |
| seq_lens(Tensor): Shape [B], length of each sequence in batch | |
| grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| """ | |
| num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1] | |
| # assert e.dtype == torch.float32 | |
| # with amp.autocast(dtype=torch.float32): | |
| e = (self.modulation.unsqueeze(1) + e).chunk(6, dim=2) | |
| # assert e[0].dtype == torch.float32 | |
| # self-attention | |
| y = self.self_attn( | |
| (self.norm1(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * (1 + e[1]) + e[0]).flatten(1, 2), | |
| seq_lens, grid_sizes, | |
| freqs, block_mask, kv_cache, current_start, cache_start) | |
| # with amp.autocast(dtype=torch.float32): | |
| x = x + (y.unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * e[2]).flatten(1, 2) | |
| # cross-attention & ffn function | |
| def cross_attn_ffn(x, context, context_lens, e, crossattn_cache=None): | |
| x = x + self.cross_attn(self.norm3(x), context, | |
| context_lens, crossattn_cache=crossattn_cache) | |
| y = self.ffn( | |
| (self.norm2(x).unflatten(dim=1, sizes=(num_frames, | |
| frame_seqlen)) * (1 + e[4]) + e[3]).flatten(1, 2) | |
| ) | |
| # with amp.autocast(dtype=torch.float32): | |
| x = x + (y.unflatten(dim=1, sizes=(num_frames, | |
| frame_seqlen)) * e[5]).flatten(1, 2) | |
| return x | |
| x = cross_attn_ffn(x, context, context_lens, e, crossattn_cache) | |
| return x | |
| class CausalHead(nn.Module): | |
| def __init__(self, dim, out_dim, patch_size, eps=1e-6): | |
| super().__init__() | |
| self.dim = dim | |
| self.out_dim = out_dim | |
| self.patch_size = patch_size | |
| self.eps = eps | |
| # layers | |
| out_dim = math.prod(patch_size) * out_dim | |
| self.norm = WanLayerNorm(dim, eps) | |
| self.head = nn.Linear(dim, out_dim) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) | |
| def forward(self, x, e): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| e(Tensor): Shape [B, F, 1, C] | |
| """ | |
| # assert e.dtype == torch.float32 | |
| # with amp.autocast(dtype=torch.float32): | |
| num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1] | |
| e = (self.modulation.unsqueeze(1) + e).chunk(2, dim=2) | |
| x = (self.head(self.norm(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * (1 + e[1]) + e[0])) | |
| return x | |
| class CausalWanModel(ModelMixin, ConfigMixin): | |
| r""" | |
| Wan diffusion backbone supporting both text-to-video and image-to-video. | |
| """ | |
| ignore_for_config = [ | |
| 'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim' | |
| ] | |
| _no_split_modules = ['WanAttentionBlock'] | |
| _supports_gradient_checkpointing = True | |
| def __init__(self, | |
| model_type='t2v', | |
| patch_size=(1, 2, 2), | |
| text_len=512, | |
| in_dim=16, | |
| dim=2048, | |
| ffn_dim=8192, | |
| freq_dim=256, | |
| text_dim=4096, | |
| out_dim=16, | |
| num_heads=16, | |
| num_layers=32, | |
| local_attn_size=-1, | |
| sink_size=0, | |
| qk_norm=True, | |
| cross_attn_norm=True, | |
| eps=1e-6): | |
| r""" | |
| Initialize the diffusion model backbone. | |
| Args: | |
| model_type (`str`, *optional*, defaults to 't2v'): | |
| Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) | |
| patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): | |
| 3D patch dimensions for video embedding (t_patch, h_patch, w_patch) | |
| text_len (`int`, *optional*, defaults to 512): | |
| Fixed length for text embeddings | |
| in_dim (`int`, *optional*, defaults to 16): | |
| Input video channels (C_in) | |
| dim (`int`, *optional*, defaults to 2048): | |
| Hidden dimension of the transformer | |
| ffn_dim (`int`, *optional*, defaults to 8192): | |
| Intermediate dimension in feed-forward network | |
| freq_dim (`int`, *optional*, defaults to 256): | |
| Dimension for sinusoidal time embeddings | |
| text_dim (`int`, *optional*, defaults to 4096): | |
| Input dimension for text embeddings | |
| out_dim (`int`, *optional*, defaults to 16): | |
| Output video channels (C_out) | |
| num_heads (`int`, *optional*, defaults to 16): | |
| Number of attention heads | |
| num_layers (`int`, *optional*, defaults to 32): | |
| Number of transformer blocks | |
| local_attn_size (`int`, *optional*, defaults to -1): | |
| Window size for temporal local attention (-1 indicates global attention) | |
| sink_size (`int`, *optional*, defaults to 0): | |
| Size of the attention sink, we keep the first `sink_size` frames unchanged when rolling the KV cache | |
| qk_norm (`bool`, *optional*, defaults to True): | |
| Enable query/key normalization | |
| cross_attn_norm (`bool`, *optional*, defaults to False): | |
| Enable cross-attention normalization | |
| eps (`float`, *optional*, defaults to 1e-6): | |
| Epsilon value for normalization layers | |
| """ | |
| super().__init__() | |
| assert model_type in ['t2v', 'i2v'] | |
| self.model_type = model_type | |
| self.patch_size = patch_size | |
| self.text_len = text_len | |
| self.in_dim = in_dim | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.freq_dim = freq_dim | |
| self.text_dim = text_dim | |
| self.out_dim = out_dim | |
| self.num_heads = num_heads | |
| self.num_layers = num_layers | |
| self.local_attn_size = local_attn_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| # embeddings | |
| self.patch_embedding = nn.Conv3d( | |
| in_dim, dim, kernel_size=patch_size, stride=patch_size) | |
| self.text_embedding = nn.Sequential( | |
| nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), | |
| nn.Linear(dim, dim)) | |
| self.time_embedding = nn.Sequential( | |
| nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |
| self.time_projection = nn.Sequential( | |
| nn.SiLU(), nn.Linear(dim, dim * 6)) | |
| # blocks | |
| cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn' | |
| self.blocks = nn.ModuleList([ | |
| CausalWanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, | |
| local_attn_size, sink_size, qk_norm, cross_attn_norm, eps) | |
| for _ in range(num_layers) | |
| ]) | |
| # head | |
| self.head = CausalHead(dim, out_dim, patch_size, eps) | |
| # buffers (don't use register_buffer otherwise dtype will be changed in to()) | |
| assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 | |
| d = dim // num_heads | |
| self.freqs = torch.cat([ | |
| rope_params(1024, d - 4 * (d // 6)), | |
| rope_params(1024, 2 * (d // 6)), | |
| rope_params(1024, 2 * (d // 6)) | |
| ], | |
| dim=1) | |
| if model_type == 'i2v': | |
| self.img_emb = MLPProj(1280, dim) | |
| # initialize weights | |
| self.init_weights() | |
| self.gradient_checkpointing = False | |
| self.block_mask = None | |
| self.num_frame_per_block = 1 | |
| self.independent_first_frame = False | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| self.gradient_checkpointing = value | |
| def _prepare_blockwise_causal_attn_mask( | |
| device: torch.device | str, num_frames: int = 21, | |
| frame_seqlen: int = 1560, num_frame_per_block=1, local_attn_size=-1 | |
| ) -> BlockMask: | |
| """ | |
| we will divide the token sequence into the following format | |
| [1 latent frame] [1 latent frame] ... [1 latent frame] | |
| We use flexattention to construct the attention mask | |
| """ | |
| total_length = num_frames * frame_seqlen | |
| # we do right padding to get to a multiple of 128 | |
| padded_length = math.ceil(total_length / 128) * 128 - total_length | |
| ends = torch.zeros(total_length + padded_length, | |
| device=device, dtype=torch.long) | |
| # Block-wise causal mask will attend to all elements that are before the end of the current chunk | |
| frame_indices = torch.arange( | |
| start=0, | |
| end=total_length, | |
| step=frame_seqlen * num_frame_per_block, | |
| device=device | |
| ) | |
| for tmp in frame_indices: | |
| ends[tmp:tmp + frame_seqlen * num_frame_per_block] = tmp + \ | |
| frame_seqlen * num_frame_per_block | |
| def attention_mask(b, h, q_idx, kv_idx): | |
| if local_attn_size == -1: | |
| return (kv_idx < ends[q_idx]) | (q_idx == kv_idx) | |
| else: | |
| return ((kv_idx < ends[q_idx]) & (kv_idx >= (ends[q_idx] - local_attn_size * frame_seqlen))) | (q_idx == kv_idx) | |
| # return ((kv_idx < total_length) & (q_idx < total_length)) | (q_idx == kv_idx) # bidirectional mask | |
| block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length, | |
| KV_LEN=total_length + padded_length, _compile=False, device=device) | |
| import torch.distributed as dist | |
| if not dist.is_initialized() or dist.get_rank() == 0: | |
| print( | |
| f" cache a block wise causal mask with block size of {num_frame_per_block} frames") | |
| print(block_mask) | |
| # import imageio | |
| # import numpy as np | |
| # from torch.nn.attention.flex_attention import create_mask | |
| # mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length + | |
| # padded_length, KV_LEN=total_length + padded_length, device=device) | |
| # import cv2 | |
| # mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024)) | |
| # imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask)) | |
| return block_mask | |
| def _prepare_teacher_forcing_mask( | |
| device: torch.device | str, num_frames: int = 21, | |
| frame_seqlen: int = 1560, num_frame_per_block=1 | |
| ) -> BlockMask: | |
| """ | |
| we will divide the token sequence into the following format | |
| [1 latent frame] [1 latent frame] ... [1 latent frame] | |
| We use flexattention to construct the attention mask | |
| """ | |
| # debug | |
| DEBUG = False | |
| if DEBUG: | |
| num_frames = 9 | |
| frame_seqlen = 256 | |
| total_length = num_frames * frame_seqlen * 2 | |
| # we do right padding to get to a multiple of 128 | |
| padded_length = math.ceil(total_length / 128) * 128 - total_length | |
| clean_ends = num_frames * frame_seqlen | |
| # for clean context frames, we can construct their flex attention mask based on a [start, end] interval | |
| context_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) | |
| # for noisy frames, we need two intervals to construct the flex attention mask [context_start, context_end] [noisy_start, noisy_end] | |
| noise_context_starts = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) | |
| noise_context_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) | |
| noise_noise_starts = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) | |
| noise_noise_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) | |
| # Block-wise causal mask will attend to all elements that are before the end of the current chunk | |
| attention_block_size = frame_seqlen * num_frame_per_block | |
| frame_indices = torch.arange( | |
| start=0, | |
| end=num_frames * frame_seqlen, | |
| step=attention_block_size, | |
| device=device, dtype=torch.long | |
| ) | |
| # attention for clean context frames | |
| for start in frame_indices: | |
| context_ends[start:start + attention_block_size] = start + attention_block_size | |
| noisy_image_start_list = torch.arange( | |
| num_frames * frame_seqlen, total_length, | |
| step=attention_block_size, | |
| device=device, dtype=torch.long | |
| ) | |
| noisy_image_end_list = noisy_image_start_list + attention_block_size | |
| # attention for noisy frames | |
| for block_index, (start, end) in enumerate(zip(noisy_image_start_list, noisy_image_end_list)): | |
| # attend to noisy tokens within the same block | |
| noise_noise_starts[start:end] = start | |
| noise_noise_ends[start:end] = end | |
| # attend to context tokens in previous blocks | |
| # noise_context_starts[start:end] = 0 | |
| noise_context_ends[start:end] = block_index * attention_block_size | |
| def attention_mask(b, h, q_idx, kv_idx): | |
| # first design the mask for clean frames | |
| clean_mask = (q_idx < clean_ends) & (kv_idx < context_ends[q_idx]) | |
| # then design the mask for noisy frames | |
| # noisy frames will attend to all clean preceeding clean frames + itself | |
| C1 = (kv_idx < noise_noise_ends[q_idx]) & (kv_idx >= noise_noise_starts[q_idx]) | |
| C2 = (kv_idx < noise_context_ends[q_idx]) & (kv_idx >= noise_context_starts[q_idx]) | |
| noise_mask = (q_idx >= clean_ends) & (C1 | C2) | |
| eye_mask = q_idx == kv_idx | |
| return eye_mask | clean_mask | noise_mask | |
| block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length, | |
| KV_LEN=total_length + padded_length, _compile=False, device=device) | |
| if DEBUG: | |
| print(block_mask) | |
| import imageio | |
| import numpy as np | |
| from torch.nn.attention.flex_attention import create_mask | |
| mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length + | |
| padded_length, KV_LEN=total_length + padded_length, device=device) | |
| import cv2 | |
| mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024)) | |
| imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask)) | |
| return block_mask | |
| def _prepare_blockwise_causal_attn_mask_i2v( | |
| device: torch.device | str, num_frames: int = 21, | |
| frame_seqlen: int = 1560, num_frame_per_block=4, local_attn_size=-1 | |
| ) -> BlockMask: | |
| """ | |
| we will divide the token sequence into the following format | |
| [1 latent frame] [N latent frame] ... [N latent frame] | |
| The first frame is separated out to support I2V generation | |
| We use flexattention to construct the attention mask | |
| """ | |
| total_length = num_frames * frame_seqlen | |
| # we do right padding to get to a multiple of 128 | |
| padded_length = math.ceil(total_length / 128) * 128 - total_length | |
| ends = torch.zeros(total_length + padded_length, | |
| device=device, dtype=torch.long) | |
| # special handling for the first frame | |
| ends[:frame_seqlen] = frame_seqlen | |
| # Block-wise causal mask will attend to all elements that are before the end of the current chunk | |
| frame_indices = torch.arange( | |
| start=frame_seqlen, | |
| end=total_length, | |
| step=frame_seqlen * num_frame_per_block, | |
| device=device | |
| ) | |
| for idx, tmp in enumerate(frame_indices): | |
| ends[tmp:tmp + frame_seqlen * num_frame_per_block] = tmp + \ | |
| frame_seqlen * num_frame_per_block | |
| def attention_mask(b, h, q_idx, kv_idx): | |
| if local_attn_size == -1: | |
| return (kv_idx < ends[q_idx]) | (q_idx == kv_idx) | |
| else: | |
| return ((kv_idx < ends[q_idx]) & (kv_idx >= (ends[q_idx] - local_attn_size * frame_seqlen))) | \ | |
| (q_idx == kv_idx) | |
| block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length, | |
| KV_LEN=total_length + padded_length, _compile=False, device=device) | |
| if not dist.is_initialized() or dist.get_rank() == 0: | |
| print( | |
| f" cache a block wise causal mask with block size of {num_frame_per_block} frames") | |
| print(block_mask) | |
| # import imageio | |
| # import numpy as np | |
| # from torch.nn.attention.flex_attention import create_mask | |
| # mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length + | |
| # padded_length, KV_LEN=total_length + padded_length, device=device) | |
| # import cv2 | |
| # mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024)) | |
| # imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask)) | |
| return block_mask | |
| def _forward_inference( | |
| self, | |
| x, | |
| t, | |
| context, | |
| seq_len, | |
| clip_fea=None, | |
| y=None, | |
| kv_cache: dict = None, | |
| crossattn_cache: dict = None, | |
| current_start: int = 0, | |
| cache_start: int = 0 | |
| ): | |
| r""" | |
| Run the diffusion model with kv caching. | |
| See Algorithm 2 of CausVid paper https://arxiv.org/abs/2412.07772 for details. | |
| This function will be run for num_frame times. | |
| Process the latent frames one by one (1560 tokens each) | |
| Args: | |
| x (List[Tensor]): | |
| List of input video tensors, each with shape [C_in, F, H, W] | |
| t (Tensor): | |
| Diffusion timesteps tensor of shape [B] | |
| context (List[Tensor]): | |
| List of text embeddings each with shape [L, C] | |
| seq_len (`int`): | |
| Maximum sequence length for positional encoding | |
| clip_fea (Tensor, *optional*): | |
| CLIP image features for image-to-video mode | |
| y (List[Tensor], *optional*): | |
| Conditional video inputs for image-to-video mode, same shape as x | |
| Returns: | |
| List[Tensor]: | |
| List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] | |
| """ | |
| if self.model_type == 'i2v': | |
| assert clip_fea is not None and y is not None | |
| # params | |
| device = self.patch_embedding.weight.device | |
| if self.freqs.device != device: | |
| self.freqs = self.freqs.to(device) | |
| if y is not None: | |
| x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
| # embeddings | |
| x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
| grid_sizes = torch.stack( | |
| [torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) | |
| x = [u.flatten(2).transpose(1, 2) for u in x] | |
| seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
| assert seq_lens.max() <= seq_len | |
| x = torch.cat(x) | |
| """ | |
| torch.cat([ | |
| torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], | |
| dim=1) for u in x | |
| ]) | |
| """ | |
| # time embeddings | |
| # with amp.autocast(dtype=torch.float32): | |
| e = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x)) | |
| e0 = self.time_projection(e).unflatten( | |
| 1, (6, self.dim)).unflatten(dim=0, sizes=t.shape) | |
| # assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
| # context | |
| context_lens = None | |
| context = self.text_embedding( | |
| torch.stack([ | |
| torch.cat( | |
| [u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) | |
| for u in context | |
| ])) | |
| if clip_fea is not None: | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| context = torch.concat([context_clip, context], dim=1) | |
| # arguments | |
| kwargs = dict( | |
| e=e0, | |
| seq_lens=seq_lens, | |
| grid_sizes=grid_sizes, | |
| freqs=self.freqs, | |
| context=context, | |
| context_lens=context_lens, | |
| block_mask=self.block_mask | |
| ) | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs, **kwargs): | |
| return module(*inputs, **kwargs) | |
| return custom_forward | |
| for block_index, block in enumerate(self.blocks): | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| kwargs.update( | |
| { | |
| "kv_cache": kv_cache[block_index], | |
| "current_start": current_start, | |
| "cache_start": cache_start | |
| } | |
| ) | |
| x = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| x, **kwargs, | |
| use_reentrant=False, | |
| ) | |
| else: | |
| kwargs.update( | |
| { | |
| "kv_cache": kv_cache[block_index], | |
| "crossattn_cache": crossattn_cache[block_index], | |
| "current_start": current_start, | |
| "cache_start": cache_start | |
| } | |
| ) | |
| x = block(x, **kwargs) | |
| # head | |
| x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2)) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| return torch.stack(x) | |
| def _forward_train( | |
| self, | |
| x, | |
| t, | |
| context, | |
| seq_len, | |
| clean_x=None, | |
| aug_t=None, | |
| clip_fea=None, | |
| y=None, | |
| ): | |
| r""" | |
| Forward pass through the diffusion model | |
| Args: | |
| x (List[Tensor]): | |
| List of input video tensors, each with shape [C_in, F, H, W] | |
| t (Tensor): | |
| Diffusion timesteps tensor of shape [B] | |
| context (List[Tensor]): | |
| List of text embeddings each with shape [L, C] | |
| seq_len (`int`): | |
| Maximum sequence length for positional encoding | |
| clip_fea (Tensor, *optional*): | |
| CLIP image features for image-to-video mode | |
| y (List[Tensor], *optional*): | |
| Conditional video inputs for image-to-video mode, same shape as x | |
| Returns: | |
| List[Tensor]: | |
| List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] | |
| """ | |
| if self.model_type == 'i2v': | |
| assert clip_fea is not None and y is not None | |
| # params | |
| device = self.patch_embedding.weight.device | |
| if self.freqs.device != device: | |
| self.freqs = self.freqs.to(device) | |
| # Construct blockwise causal attn mask | |
| if self.block_mask is None: | |
| if clean_x is not None: | |
| if self.independent_first_frame: | |
| raise NotImplementedError() | |
| else: | |
| self.block_mask = self._prepare_teacher_forcing_mask( | |
| device, num_frames=x.shape[2], | |
| frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]), | |
| num_frame_per_block=self.num_frame_per_block | |
| ) | |
| else: | |
| if self.independent_first_frame: | |
| self.block_mask = self._prepare_blockwise_causal_attn_mask_i2v( | |
| device, num_frames=x.shape[2], | |
| frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]), | |
| num_frame_per_block=self.num_frame_per_block, | |
| local_attn_size=self.local_attn_size | |
| ) | |
| else: | |
| self.block_mask = self._prepare_blockwise_causal_attn_mask( | |
| device, num_frames=x.shape[2], | |
| frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]), | |
| num_frame_per_block=self.num_frame_per_block, | |
| local_attn_size=self.local_attn_size | |
| ) | |
| if y is not None: | |
| x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
| # embeddings | |
| x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
| grid_sizes = torch.stack( | |
| [torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) | |
| x = [u.flatten(2).transpose(1, 2) for u in x] | |
| seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
| assert seq_lens.max() <= seq_len | |
| x = torch.cat([ | |
| torch.cat([u, u.new_zeros(1, seq_lens[0] - u.size(1), u.size(2))], | |
| dim=1) for u in x | |
| ]) | |
| # time embeddings | |
| # with amp.autocast(dtype=torch.float32): | |
| e = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x)) | |
| e0 = self.time_projection(e).unflatten( | |
| 1, (6, self.dim)).unflatten(dim=0, sizes=t.shape) | |
| # assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
| # context | |
| context_lens = None | |
| context = self.text_embedding( | |
| torch.stack([ | |
| torch.cat( | |
| [u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) | |
| for u in context | |
| ])) | |
| if clip_fea is not None: | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| context = torch.concat([context_clip, context], dim=1) | |
| if clean_x is not None: | |
| clean_x = [self.patch_embedding(u.unsqueeze(0)) for u in clean_x] | |
| clean_x = [u.flatten(2).transpose(1, 2) for u in clean_x] | |
| seq_lens_clean = torch.tensor([u.size(1) for u in clean_x], dtype=torch.long) | |
| assert seq_lens_clean.max() <= seq_len | |
| clean_x = torch.cat([ | |
| torch.cat([u, u.new_zeros(1, seq_lens_clean[0] - u.size(1), u.size(2))], dim=1) for u in clean_x | |
| ]) | |
| x = torch.cat([clean_x, x], dim=1) | |
| if aug_t is None: | |
| aug_t = torch.zeros_like(t) | |
| e_clean = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, aug_t.flatten()).type_as(x)) | |
| e0_clean = self.time_projection(e_clean).unflatten( | |
| 1, (6, self.dim)).unflatten(dim=0, sizes=t.shape) | |
| e0 = torch.cat([e0_clean, e0], dim=1) | |
| # arguments | |
| kwargs = dict( | |
| e=e0, | |
| seq_lens=seq_lens, | |
| grid_sizes=grid_sizes, | |
| freqs=self.freqs, | |
| context=context, | |
| context_lens=context_lens, | |
| block_mask=self.block_mask) | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs, **kwargs): | |
| return module(*inputs, **kwargs) | |
| return custom_forward | |
| for block in self.blocks: | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| x = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| x, **kwargs, | |
| use_reentrant=False, | |
| ) | |
| else: | |
| x = block(x, **kwargs) | |
| if clean_x is not None: | |
| x = x[:, x.shape[1] // 2:] | |
| # head | |
| x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2)) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| return torch.stack(x) | |
| def forward( | |
| self, | |
| *args, | |
| **kwargs | |
| ): | |
| if kwargs.get('kv_cache', None) is not None: | |
| return self._forward_inference(*args, **kwargs) | |
| else: | |
| return self._forward_train(*args, **kwargs) | |
| def unpatchify(self, x, grid_sizes): | |
| r""" | |
| Reconstruct video tensors from patch embeddings. | |
| Args: | |
| x (List[Tensor]): | |
| List of patchified features, each with shape [L, C_out * prod(patch_size)] | |
| grid_sizes (Tensor): | |
| Original spatial-temporal grid dimensions before patching, | |
| shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) | |
| Returns: | |
| List[Tensor]: | |
| Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] | |
| """ | |
| c = self.out_dim | |
| out = [] | |
| for u, v in zip(x, grid_sizes.tolist()): | |
| u = u[:math.prod(v)].view(*v, *self.patch_size, c) | |
| u = torch.einsum('fhwpqrc->cfphqwr', u) | |
| u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) | |
| out.append(u) | |
| return out | |
| def init_weights(self): | |
| r""" | |
| Initialize model parameters using Xavier initialization. | |
| """ | |
| # basic init | |
| for m in self.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.xavier_uniform_(m.weight) | |
| if m.bias is not None: | |
| nn.init.zeros_(m.bias) | |
| # init embeddings | |
| nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) | |
| for m in self.text_embedding.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, std=.02) | |
| for m in self.time_embedding.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, std=.02) | |
| # init output layer | |
| nn.init.zeros_(self.head.head.weight) | |