Ai-ToolStack / app /routers /inference.py
teja141290's picture
Update: Remove damage model and add Docker configuration
98bf2c9
from fastapi import APIRouter, Request, UploadFile, File, Form, HTTPException
from fastapi.responses import HTMLResponse, FileResponse, JSONResponse
from fastapi.templating import Jinja2Templates
from starlette.background import BackgroundTask
import shutil
import os
import uuid
from pathlib import Path
from typing import Optional
import json
import base64
from ultralytics import YOLO
import cv2
import numpy as np
from ..utils.llm_client import GroqAnalyzer
# Templates directory
TEMPLATES_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), "templates")
templates = Jinja2Templates(directory=TEMPLATES_DIR)
router = APIRouter()
UPLOAD_DIR = os.path.join("/tmp", "uploads")
RESULTS_DIR = os.path.join("/tmp", "results")
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(RESULTS_DIR, exist_ok=True)
ALLOWED_EXTENSIONS = {"jpg", "jpeg", "png", "tiff", "tif"}
# Model paths
# DAMAGE_MODEL_PATH = os.path.join("/tmp", "models", "damage", "weights", "weights", "best.pt") # Commented for now
PARTS_MODEL_PATH = os.path.join("/tmp", "models", "parts", "weights", "weights", "best.pt")
# Class names for parts
PARTS_CLASS_NAMES = ['headlamp', 'front_bumper', 'hood', 'door', 'rear_bumper']
# Initialize GroqAnalyzer
groq_analyzer = GroqAnalyzer()
# Helper: Run YOLO inference and return results
def run_yolo_inference(model_path, image_path, task='segment'):
model = YOLO(model_path)
results = model.predict(source=image_path, imgsz=640, conf=0.25, save=False, task=task)
return results[0]
# Helper: Draw masks and confidence on image
def draw_masks_and_conf(image_path, yolo_result, class_names=None):
img = cv2.imread(image_path)
overlay = img.copy()
out_img = img.copy()
colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255), (0,255,255)]
for i, box in enumerate(yolo_result.boxes):
conf = float(box.conf[0])
cls = int(box.cls[0])
color = colors[cls % len(colors)]
# Draw bbox
x1, y1, x2, y2 = map(int, box.xyxy[0])
cv2.rectangle(overlay, (x1, y1), (x2, y2), color, 2)
label = f"{class_names[cls] if class_names else 'damage'}: {conf:.2f}"
cv2.putText(overlay, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
# Draw mask if available
if hasattr(yolo_result, 'masks') and yolo_result.masks is not None:
mask = yolo_result.masks.data[i].cpu().numpy()
mask = (mask * 255).astype(np.uint8)
mask = cv2.resize(mask, (x2-x1, y2-y1))
roi = overlay[y1:y2, x1:x2]
colored_mask = np.zeros_like(roi)
colored_mask[mask > 127] = color
overlay[y1:y2, x1:x2] = cv2.addWeighted(roi, 0.5, colored_mask, 0.5, 0)
out_img = cv2.addWeighted(overlay, 0.7, img, 0.3, 0)
return out_img
# Helper: Generate JSON output
def generate_json_output(filename, damage_result, parts_result):
# Damage severity: use max confidence
if damage_result is not None and hasattr(damage_result, 'boxes'):
severity_score = float(max([float(box.conf[0]) for box in damage_result.boxes], default=0))
damage_regions = []
for box in damage_result.boxes:
x1, y1, x2, y2 = map(float, box.xyxy[0])
conf = float(box.conf[0])
damage_regions.append({"bbox": [x1, y1, x2, y2], "confidence": conf})
else:
severity_score = 0
damage_regions = []
# Parts
parts = []
for i, box in enumerate(parts_result.boxes):
x1, y1, x2, y2 = map(float, box.xyxy[0])
conf = float(box.conf[0])
cls = int(box.cls[0])
# Damage %: use mask area / bbox area if available
damage_percentage = None
if hasattr(parts_result, 'masks') and parts_result.masks is not None:
mask = parts_result.masks.data[i].cpu().numpy()
mask_area = np.sum(mask > 0.5)
bbox_area = (x2-x1)*(y2-y1)
damage_percentage = float(mask_area / bbox_area) if bbox_area > 0 else None
parts.append({
"part": PARTS_CLASS_NAMES[cls] if cls < len(PARTS_CLASS_NAMES) else str(cls),
"damaged": True,
"confidence": conf,
"damage_percentage": damage_percentage,
"bbox": [x1, y1, x2, y2]
})
# Optionally, add base64 masks
# (not implemented here for brevity)
return {
"filename": filename,
"damage": {
"severity_score": severity_score,
"regions": damage_regions
},
"parts": parts,
"cost_estimate": None
}
# Dummy login credentials
def check_login(username: str, password: str) -> bool:
return username == "demo" and password == "demo123"
@router.get("/", response_class=HTMLResponse)
def home(request: Request):
return templates.TemplateResponse("index.html", {"request": request, "result": None})
@router.post("/login", response_class=HTMLResponse)
def login(request: Request, username: str = Form(...), password: str = Form(...)):
if check_login(username, password):
return templates.TemplateResponse("index.html", {"request": request, "result": None, "user": username})
return templates.TemplateResponse("login.html", {"request": request, "error": "Invalid credentials"})
@router.get("/login", response_class=HTMLResponse)
def login_page(request: Request):
return templates.TemplateResponse("login.html", {"request": request})
@router.post("/upload", response_class=HTMLResponse)
async def upload_image(request: Request, file: UploadFile = File(...)):
try:
ext = file.filename.split(".")[-1].lower()
print(f"[DEBUG] Uploaded file extension: {ext}")
if ext not in ALLOWED_EXTENSIONS:
print(f"[DEBUG] Unsupported file type: {ext}")
return templates.TemplateResponse("index.html", {"request": request, "error": "Unsupported file type."})
# Save uploaded file
session_id = str(uuid.uuid4())
upload_filename = f"{session_id}_{file.filename}"
upload_path = os.path.join(UPLOAD_DIR, upload_filename)
print(f"[DEBUG] Saving uploaded file to: {upload_path}")
with open(upload_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
print(f"[DEBUG] File saved. Running inference...")
warning = None
try:
damage_result = None # Not used
parts_result = run_yolo_inference(PARTS_MODEL_PATH, upload_path)
print(f"[DEBUG] YOLO inference result: {parts_result}")
parts_img = None
json_output = None
parts_img_url = None
json_url = None
if hasattr(parts_result, 'boxes') and len(parts_result.boxes) > 0:
print(f"[DEBUG] Detected {len(parts_result.boxes)} parts.")
parts_img = draw_masks_and_conf(upload_path, parts_result, class_names=PARTS_CLASS_NAMES)
parts_img_filename = f"{session_id}_parts.png"
parts_img_path = os.path.join(RESULTS_DIR, parts_img_filename)
cv2.imwrite(parts_img_path, parts_img)
print(f"[DEBUG] Parts image saved to: {parts_img_path}")
parts_img_url = f"/download/result/{parts_img_filename}"
json_output = generate_json_output(file.filename, damage_result, parts_result)
json_filename = f"{session_id}_result.json"
json_path = os.path.join(RESULTS_DIR, json_filename)
with open(json_path, "w") as jf:
json.dump(json_output, jf, indent=2)
print(f"[DEBUG] JSON output saved to: {json_path}")
json_url = f"/download/result/{json_filename}"
else:
warning = "No parts detected in the image."
print("[DEBUG] No parts detected.")
llm_analysis = groq_analyzer.analyze_damage(upload_path)
print(f"[DEBUG] LLM analysis output: {llm_analysis}")
result = {
"filename": file.filename,
"parts_image": parts_img_url,
"json": json_output,
"json_download": json_url,
"llm_analysis": llm_analysis,
"warning": warning
}
print("[DEBUG] Result dict:", result)
except Exception as e:
result = {
"filename": file.filename,
"error": f"Inference failed: {str(e)}",
"parts_image": None,
"json": None,
"json_download": None,
"llm_analysis": None,
"warning": None
}
print("[ERROR] Inference failed:", e)
import threading
import time
def delayed_cleanup():
time.sleep(300) # 5 minutes
try:
os.remove(upload_path)
print(f"[DEBUG] Cleaned up upload: {upload_path}")
except Exception as ce:
print(f"[DEBUG] Cleanup error (upload): {ce}")
for suffix in ["_parts.png", "_result.json"]:
try:
os.remove(os.path.join(RESULTS_DIR, f"{session_id}{suffix}"))
print(f"[DEBUG] Cleaned up result: {os.path.join(RESULTS_DIR, f'{session_id}{suffix}')}" )
except Exception as ce:
print(f"[DEBUG] Cleanup error (result): {ce}")
threading.Thread(target=delayed_cleanup, daemon=True).start()
return templates.TemplateResponse(
"index.html",
{
"request": request,
"result": result,
"original_image": f"/download/upload/{upload_filename}"
}
)
except Exception as e:
print(f"[ERROR] Inference failed: {str(e)}")
return templates.TemplateResponse(
"index.html",
{"request": request, "error": f"Error processing image: {str(e)}"}
)
# --- Serve files from /tmp/uploads and /tmp/results ---
@router.get("/download/upload/{filename}")
def download_uploaded_file(filename: str):
file_path = os.path.join(UPLOAD_DIR, filename)
if not os.path.exists(file_path):
return JSONResponse(status_code=404, content={"error": "File not found"})
return FileResponse(file_path, filename=filename)
@router.get("/download/result/{filename}")
def download_result_file(filename: str):
file_path = os.path.join(RESULTS_DIR, filename)
if not os.path.exists(file_path):
return JSONResponse(status_code=404, content={"error": "File not found"})
return FileResponse(file_path, filename=filename)