Spaces:
Running
on
Zero
Running
on
Zero
## BigVGAN: A Universal Neural Vocoder with Large-Scale Training | |
#### Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, Sungroh Yoon | |
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800"></center> | |
### [Paper](https://arxiv.org/abs/2206.04658) | |
### [Audio demo](https://bigvgan-demo.github.io/) | |
## Installation | |
Clone the repository and install dependencies. | |
```shell | |
# the codebase has been tested on Python 3.8 / 3.10 with PyTorch 1.12.1 / 1.13 conda binaries | |
git clone https://github.com/NVIDIA/BigVGAN | |
pip install -r requirements.txt | |
``` | |
Create symbolic link to the root of the dataset. The codebase uses filelist with the relative path from the dataset. Below are the example commands for LibriTTS dataset. | |
``` shell | |
cd LibriTTS && \ | |
ln -s /path/to/your/LibriTTS/train-clean-100 train-clean-100 && \ | |
ln -s /path/to/your/LibriTTS/train-clean-360 train-clean-360 && \ | |
ln -s /path/to/your/LibriTTS/train-other-500 train-other-500 && \ | |
ln -s /path/to/your/LibriTTS/dev-clean dev-clean && \ | |
ln -s /path/to/your/LibriTTS/dev-other dev-other && \ | |
ln -s /path/to/your/LibriTTS/test-clean test-clean && \ | |
ln -s /path/to/your/LibriTTS/test-other test-other && \ | |
cd .. | |
``` | |
## Training | |
Train BigVGAN model. Below is an example command for training BigVGAN using LibriTTS dataset at 24kHz with a full 100-band mel spectrogram as input. | |
```shell | |
python train.py \ | |
--config configs/bigvgan_24khz_100band.json \ | |
--input_wavs_dir LibriTTS \ | |
--input_training_file LibriTTS/train-full.txt \ | |
--input_validation_file LibriTTS/val-full.txt \ | |
--list_input_unseen_wavs_dir LibriTTS LibriTTS \ | |
--list_input_unseen_validation_file LibriTTS/dev-clean.txt LibriTTS/dev-other.txt \ | |
--checkpoint_path exp/bigvgan | |
``` | |
## Synthesis | |
Synthesize from BigVGAN model. Below is an example command for generating audio from the model. | |
It computes mel spectrograms using wav files from `--input_wavs_dir` and saves the generated audio to `--output_dir`. | |
```shell | |
python inference.py \ | |
--checkpoint_file exp/bigvgan/g_05000000 \ | |
--input_wavs_dir /path/to/your/input_wav \ | |
--output_dir /path/to/your/output_wav | |
``` | |
`inference_e2e.py` supports synthesis directly from the mel spectrogram saved in `.npy` format, with shapes `[1, channel, frame]` or `[channel, frame]`. | |
It loads mel spectrograms from `--input_mels_dir` and saves the generated audio to `--output_dir`. | |
Make sure that the STFT hyperparameters for mel spectrogram are the same as the model, which are defined in `config.json` of the corresponding model. | |
```shell | |
python inference_e2e.py \ | |
--checkpoint_file exp/bigvgan/g_05000000 \ | |
--input_mels_dir /path/to/your/input_mel \ | |
--output_dir /path/to/your/output_wav | |
``` | |
## Pretrained Models | |
We provide the [pretrained models](https://drive.google.com/drive/folders/1e9wdM29d-t3EHUpBb8T4dcHrkYGAXTgq). | |
One can download the checkpoints of generator (e.g., g_05000000) and discriminator (e.g., do_05000000) within the listed folders. | |
|Folder Name|Sampling Rate|Mel band|fmax|Params.|Dataset|Fine-Tuned| | |
|------|---|---|---|---|------|---| | |
|bigvgan_24khz_100band|24 kHz|100|12000|112M|LibriTTS|No| | |
|bigvgan_base_24khz_100band|24 kHz|100|12000|14M|LibriTTS|No| | |
|bigvgan_22khz_80band|22 kHz|80|8000|112M|LibriTTS + VCTK + LJSpeech|No| | |
|bigvgan_base_22khz_80band|22 kHz|80|8000|14M|LibriTTS + VCTK + LJSpeech|No| | |
The paper results are based on 24kHz BigVGAN models trained on LibriTTS dataset. | |
We also provide 22kHz BigVGAN models with band-limited setup (i.e., fmax=8000) for TTS applications. | |
Note that, the latest checkpoints use ``snakebeta`` activation with log scale parameterization, which have the best overall quality. | |
## TODO | |
Current codebase only provides a plain PyTorch implementation for the filtered nonlinearity. We are working on a fast CUDA kernel implementation, which will be released in the future. | |
## References | |
* [HiFi-GAN](https://github.com/jik876/hifi-gan) (for generator and multi-period discriminator) | |
* [Snake](https://github.com/EdwardDixon/snake) (for periodic activation) | |
* [Alias-free-torch](https://github.com/junjun3518/alias-free-torch) (for anti-aliasing) | |
* [Julius](https://github.com/adefossez/julius) (for low-pass filter) | |
* [UnivNet](https://github.com/mindslab-ai/univnet) (for multi-resolution discriminator) |