Spaces:
Build error
Build error
from langchain.agents.initialize import initialize_agent | |
from langchain.agents.tools import Tool | |
from langchain.chains.conversation.memory import ConversationBufferMemory | |
from langchain.llms.openai import OpenAI | |
from audio_foundation_models import * | |
import gradio as gr | |
_DESCRIPTION = '# [AudioGPT](https://github.com/AIGC-Audio/AudioGPT)' | |
_DESCRIPTION += '\n<p>This is a demo to the work <a href="https://github.com/AIGC-Audio/AudioGPT" style="text-decoration: underline;" target="_blank">AudioGPT: Sending and Receiving Speech, Sing, Audio, and Talking head during chatting</a>. </p>' | |
_DESCRIPTION += '\n<p>This model can only be used for non-commercial purposes.' | |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None: | |
_DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>' | |
AUDIO_CHATGPT_PREFIX = """AudioGPT | |
AudioGPT can not directly read audios, but it has a list of tools to finish different speech, audio, and singing voice tasks. Each audio will have a file name formed as "audio/xxx.wav". When talking about audios, AudioGPT is very strict to the file name and will never fabricate nonexistent files. | |
AudioGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the audio content and audio file name. It will remember to provide the file name from the last tool observation, if a new audio is generated. | |
Human may provide new audios to AudioGPT with a description. The description helps AudioGPT to understand this audio, but AudioGPT should use tools to finish following tasks, rather than directly imagine from the description. | |
Overall, AudioGPT is a powerful audio dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. | |
TOOLS: | |
------ | |
AudioGPT has access to the following tools:""" | |
AUDIO_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format: | |
``` | |
Thought: Do I need to use a tool? Yes | |
Action: the action to take, should be one of [{tool_names}] | |
Action Input: the input to the action | |
Observation: the result of the action | |
``` | |
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format: | |
``` | |
Thought: Do I need to use a tool? No | |
{ai_prefix}: [your response here] | |
``` | |
""" | |
AUDIO_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if not exists. | |
You will remember to provide the audio file name loyally if it's provided in the last tool observation. | |
Begin! | |
Previous conversation history: | |
{chat_history} | |
New input: {input} | |
Thought: Do I need to use a tool? {agent_scratchpad}""" | |
def cut_dialogue_history(history_memory, keep_last_n_words = 500): | |
tokens = history_memory.split() | |
n_tokens = len(tokens) | |
print(f"history_memory:{history_memory}, n_tokens: {n_tokens}") | |
if n_tokens < keep_last_n_words: | |
return history_memory | |
else: | |
paragraphs = history_memory.split('\n') | |
last_n_tokens = n_tokens | |
while last_n_tokens >= keep_last_n_words: | |
last_n_tokens = last_n_tokens - len(paragraphs[0].split(' ')) | |
paragraphs = paragraphs[1:] | |
return '\n' + '\n'.join(paragraphs) | |
def merge_audio(audio_path_1, audio_path_2): | |
merged_signal = [] | |
sr_1, signal_1 = wavfile.read(audio_path_1) | |
sr_2, signal_2 = wavfile.read(audio_path_2) | |
if sr_1 != sr_2: | |
signal_2 = librosa.resample(signal_2, sr_2, sr_1) | |
merged_signal.append(signal_1) | |
merged_signal.append(signal_2) | |
merged_signal = np.hstack(merged_signal) | |
merged_signal = np.asarray(merged_signal, dtype=np.int16) | |
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") | |
wavfile.write(audio_filename, sr_1, merged_signal) | |
return audio_filename | |
class ConversationBot: | |
def __init__(self, load_dict): | |
print("Initializing AudioGPT") | |
self.tools = [] | |
self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output') | |
self.models = dict() | |
for class_name, device in load_dict.items(): | |
self.models[class_name] = globals()[class_name](device=device) | |
def run_text(self, text, state): | |
print("===============Running run_text =============") | |
print("Inputs:", text, state) | |
print("======>Previous memory:\n %s" % self.agent.memory) | |
self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500) | |
res = self.agent({"input": text}) | |
if res['intermediate_steps'] == []: | |
print("======>Current memory:\n %s" % self.agent.memory) | |
response = res['output'] | |
state = state + [(text, response)] | |
print("Outputs:", state) | |
return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) | |
else: | |
tool = res['intermediate_steps'][0][0].tool | |
if tool == "Generate Image From User Input Text": | |
res['output'] = res['output'].replace("\\", "/") | |
response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) | |
state = state + [(text, response)] | |
print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n" | |
f"Current Memory: {self.agent.memory.buffer}") | |
return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) | |
elif tool == "Detect The Sound Event From The Audio": | |
image_filename = res['intermediate_steps'][0][1] | |
response = res['output'] + f"![](/file={image_filename})*{image_filename}*" | |
state = state + [(text, response)] | |
print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n" | |
f"Current Memory: {self.agent.memory.buffer}") | |
return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) | |
elif tool == "Generate Text From The Audio" or tool == "Transcribe speech" or tool == "Target Sound Detection": | |
print("======>Current memory:\n %s" % self.agent.memory) | |
response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) | |
image_filename = res['intermediate_steps'][0][1] | |
#response = res['output'] + f"![](/file={image_filename})*{image_filename}*" | |
state = state + [(text, response)] | |
print("Outputs:", state) | |
return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) | |
elif tool == "Audio Inpainting": | |
audio_filename = res['intermediate_steps'][0][0].tool_input | |
image_filename = res['intermediate_steps'][0][1] | |
print("======>Current memory:\n %s" % self.agent.memory) | |
response = res['output'] | |
state = state + [(text, response)] | |
print("Outputs:", state) | |
return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Video.update(visible=False), gr.Image.update(value=image_filename,visible=True), gr.Button.update(visible=True) | |
print("======>Current memory:\n %s" % self.agent.memory) | |
response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) | |
audio_filename = res['intermediate_steps'][0][1] | |
state = state + [(text, response)] | |
print("Outputs:", state) | |
return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Video.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False) | |
def run_image_or_audio(self, file, state, txt): | |
file_type = file.name[-3:] | |
if file_type == "wav": | |
print("===============Running run_audio =============") | |
print("Inputs:", file, state) | |
print("======>Previous memory:\n %s" % self.agent.memory) | |
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") | |
audio_load = whisper.load_audio(file.name) | |
soundfile.write(audio_filename, audio_load, samplerate = 16000) | |
description = self.models['A2T'].inference(audio_filename) | |
Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \ | |
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(audio_filename, description) | |
AI_prompt = "Received. " | |
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt | |
# AI_prompt = "Received. " | |
# self.agent.memory.buffer = self.agent.memory.buffer + 'AI: ' + AI_prompt | |
print("======>Current memory:\n %s" % self.agent.memory) | |
#state = state + [(f"<audio src=audio_filename controls=controls></audio>*{audio_filename}*", AI_prompt)] | |
state = state + [(f"*{audio_filename}*", AI_prompt)] | |
print("Outputs:", state) | |
return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Video.update(visible=False) | |
else: | |
# print("===============Running run_image =============") | |
# print("Inputs:", file, state) | |
# print("======>Previous memory:\n %s" % self.agent.memory) | |
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") | |
print("======>Auto Resize Image...") | |
img = Image.open(file.name) | |
width, height = img.size | |
ratio = min(512 / width, 512 / height) | |
width_new, height_new = (round(width * ratio), round(height * ratio)) | |
width_new = int(np.round(width_new / 64.0)) * 64 | |
height_new = int(np.round(height_new / 64.0)) * 64 | |
img = img.resize((width_new, height_new)) | |
img = img.convert('RGB') | |
img.save(image_filename, "PNG") | |
print(f"Resize image form {width}x{height} to {width_new}x{height_new}") | |
description = self.models['ImageCaptioning'].inference(image_filename) | |
Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \ | |
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description) | |
AI_prompt = "Received. " | |
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt | |
print("======>Current memory:\n %s" % self.agent.memory) | |
state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)] | |
print(f"\nProcessed run_image, Input image: {image_filename}\nCurrent state: {state}\n" | |
f"Current Memory: {self.agent.memory.buffer}") | |
return state, state, gr.Audio.update(visible=False), gr.Video.update(visible=False) | |
def speech(self, speech_input, state): | |
input_audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav") | |
text = self.models['ASR'].translate_english(speech_input) | |
print("Inputs:", text, state) | |
print("======>Previous memory:\n %s" % self.agent.memory) | |
self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500) | |
res = self.agent({"input": text}) | |
if res['intermediate_steps'] == []: | |
print("======>Current memory:\n %s" % self.agent.memory) | |
response = res['output'] | |
output_audio_filename = self.models['TTS'].inference(response) | |
state = state + [(text, response)] | |
print("Outputs:", state) | |
return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) | |
else: | |
tool = res['intermediate_steps'][0][0].tool | |
if tool == "Generate Image From User Input Text" or tool == "Generate Text From The Audio" or tool == "Target Sound Detection": | |
print("======>Current memory:\n %s" % self.agent.memory) | |
response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) | |
output_audio_filename = self.models['TTS'].inference(res['output']) | |
state = state + [(text, response)] | |
print("Outputs:", state) | |
return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) | |
elif tool == "Transcribe Speech": | |
print("======>Current memory:\n %s" % self.agent.memory) | |
output_audio_filename = self.models['TTS'].inference(res['output']) | |
response = res['output'] | |
state = state + [(text, response)] | |
print("Outputs:", state) | |
return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) | |
elif tool == "Detect The Sound Event From The Audio": | |
print("======>Current memory:\n %s" % self.agent.memory) | |
image_filename = res['intermediate_steps'][0][1] | |
output_audio_filename = self.models['TTS'].inference(res['output']) | |
response = res['output'] + f"![](/file={image_filename})*{image_filename}*" | |
state = state + [(text, response)] | |
print("Outputs:", state) | |
return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) | |
elif tool == "Generate a talking human portrait video given a input Audio": | |
video_filename = res['intermediate_steps'][0][1] | |
print("======>Current memory:\n %s" % self.agent.memory) | |
response = res['output'] | |
output_audio_filename = self.models['TTS'].inference(res['output']) | |
state = state + [(text, response)] | |
print("Outputs:", state) | |
return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(value=video_filename,visible=True) | |
print("======>Current memory:\n %s" % self.agent.memory) | |
response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) | |
audio_filename = res['intermediate_steps'][0][1] | |
Res = "The audio file has been generated and the audio is " | |
output_audio_filename = merge_audio(self.models['TTS'].inference(Res), audio_filename) | |
print(output_audio_filename) | |
state = state + [(text, response)] | |
response = res['output'] | |
print("Outputs:", state) | |
return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False) | |
def inpainting(self, state, audio_filename, image_filename): | |
print("===============Running inpainting =============") | |
print("Inputs:", state) | |
print("======>Previous memory:\n %s" % self.agent.memory) | |
new_image_filename, new_audio_filename = self.models['Inpaint'].predict(audio_filename, image_filename) | |
AI_prompt = "Here are the predict audio and the mel spectrum." + f"*{new_audio_filename}*" + f"![](/file={new_image_filename})*{new_image_filename}*" | |
self.agent.memory.buffer = self.agent.memory.buffer + 'AI: ' + AI_prompt | |
print("======>Current memory:\n %s" % self.agent.memory) | |
state = state + [(f"Audio Inpainting", AI_prompt)] | |
print("Outputs:", state) | |
return state, state, gr.Image.update(visible=False), gr.Audio.update(value=new_audio_filename, visible=True), gr.Button.update(visible=False) | |
def clear_audio(self): | |
return gr.Audio.update(value=None, visible=False) | |
def clear_input_audio(self): | |
return gr.Audio.update(value=None) | |
def clear_image(self): | |
return gr.Image.update(value=None, visible=False) | |
def clear_video(self): | |
return gr.Video.update(value=None, visible=False) | |
def clear_button(self): | |
return gr.Button.update(visible=False) | |
def init_agent(self, openai_api_key, interaction_type): | |
if interaction_type == "text": | |
for class_name, instance in self.models.items(): | |
for e in dir(instance): | |
if e.startswith('inference'): | |
func = getattr(instance, e) | |
self.tools.append(Tool(name=func.name, description=func.description, func=func)) | |
self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key) | |
self.agent = initialize_agent( | |
self.tools, | |
self.llm, | |
agent="conversational-react-description", | |
verbose=True, | |
memory=self.memory, | |
return_intermediate_steps=True, | |
agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, ) | |
return gr.update(visible = False), gr.update(visible = True), gr.update(visible = True), gr.update(visible = False) | |
else: | |
for class_name, instance in self.models.items(): | |
if class_name != 'T2A' and class_name != 'I2A' and class_name != 'Inpaint' and class_name != 'ASR' and class_name != 'SoundDetection' and class_name != 'Speech_Enh_SC' and class_name != 'Speech_SS': | |
for e in dir(instance): | |
if e.startswith('inference'): | |
func = getattr(instance, e) | |
self.tools.append(Tool(name=func.name, description=func.description, func=func)) | |
self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key) | |
self.agent = initialize_agent( | |
self.tools, | |
self.llm, | |
agent="conversational-react-description", | |
verbose=True, | |
memory=self.memory, | |
return_intermediate_steps=True, | |
agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, ) | |
return gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = True) | |
if __name__ == '__main__': | |
bot = ConversationBot({'ImageCaptioning': 'cuda:0', | |
'T2A': 'cuda:0', | |
'I2A': 'cuda:0', | |
'TTS': 'cpu', | |
'T2S': 'cpu', | |
'ASR': 'cuda:0', | |
'A2T': 'cpu', | |
'Inpaint': 'cuda:0', | |
'SoundDetection': 'cpu', | |
'Binaural': 'cuda:0', | |
'SoundExtraction': 'cuda:0', | |
'TargetSoundDetection': 'cuda:0', | |
'Speech_Enh_SC': 'cuda:0', | |
'Speech_SS': 'cuda:0' | |
}) | |
with gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}") as demo: | |
with gr.Row(): | |
gr.Markdown("## AudioGPT") | |
chatbot = gr.Chatbot(elem_id="chatbot", label="AudioGPT", visible=False) | |
state = gr.State([]) | |
with gr.Row() as select_raws: | |
with gr.Column(scale=0.7): | |
interaction_type = gr.Radio(choices=['text', 'speech'], value='text', label='Interaction Type') | |
openai_api_key_textbox = gr.Textbox( | |
placeholder="Paste your OpenAI API key here to start AudioGPT(sk-...) and press Enter ↵️", | |
show_label=False, | |
lines=1, | |
type="password", | |
) | |
with gr.Row(visible=False) as text_input_raws: | |
with gr.Column(scale=0.7): | |
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False) | |
with gr.Column(scale=0.1, min_width=0): | |
run = gr.Button("🏃♂️Run") | |
with gr.Column(scale=0.1, min_width=0): | |
clear_txt = gr.Button("🔄Clear️") | |
with gr.Column(scale=0.1, min_width=0): | |
btn = gr.UploadButton("🖼️Upload", file_types=["image","audio"]) | |
with gr.Row(): | |
outaudio = gr.Audio(visible=False) | |
with gr.Row(): | |
with gr.Column(scale=0.3, min_width=0): | |
outvideo = gr.Video(visible=False) | |
with gr.Row(): | |
show_mel = gr.Image(type="filepath",tool='sketch',visible=False) | |
with gr.Row(): | |
run_button = gr.Button("Predict Masked Place",visible=False) | |
with gr.Row(visible=False) as speech_input_raws: | |
with gr.Column(scale=0.7): | |
speech_input = gr.Audio(source="microphone", type="filepath", label="Input") | |
with gr.Column(scale=0.15, min_width=0): | |
submit_btn = gr.Button("🏃♂️Submit") | |
with gr.Column(scale=0.15, min_width=0): | |
clear_speech = gr.Button("🔄Clear️") | |
with gr.Row(): | |
speech_output = gr.Audio(label="Output",visible=False) | |
gr.Examples( | |
examples=["Generate a speech with text 'here we go'", | |
"Transcribe this speech", | |
"Transfer the mono speech to a binaural one", | |
"Generate an audio of a dog barking", | |
"Generate an audio of this uploaded image", | |
"Give me the description of this audio", | |
"I want to inpaint it", | |
"What events does this audio include?", | |
"When did the thunder happen in this audio?", | |
"Extract the thunder event from this audio", | |
"Generate a piece of singing voice. Text sequence is 小酒窝长睫毛AP是你最美的记号. Note sequence is C#4/Db4 | F#4/Gb4 | G#4/Ab4 | A#4/Bb4 F#4/Gb4 | F#4/Gb4 C#4/Db4 | C#4/Db4 | rest | C#4/Db4 | A#4/Bb4 | G#4/Ab4 | A#4/Bb4 | G#4/Ab4 | F4 | C#4/Db4. Note duration sequence is 0.407140 | 0.376190 | 0.242180 | 0.509550 0.183420 | 0.315400 0.235020 | 0.361660 | 0.223070 | 0.377270 | 0.340550 | 0.299620 | 0.344510 | 0.283770 | 0.323390 | 0.360340.", | |
], | |
inputs=txt | |
) | |
openai_api_key_textbox.submit(bot.init_agent, [openai_api_key_textbox, interaction_type], [select_raws, chatbot, text_input_raws, speech_input_raws]) | |
txt.submit(bot.run_text, [txt, state], [chatbot, state, outaudio, outvideo, show_mel, run_button]) | |
txt.submit(lambda: "", None, txt) | |
run.click(bot.run_text, [txt, state], [chatbot, state, outaudio, outvideo, show_mel, run_button]) | |
run.click(lambda: "", None, txt) | |
btn.upload(bot.run_image_or_audio, [btn, state, txt], [chatbot, state, outaudio, outvideo]) | |
run_button.click(bot.inpainting, [state, outaudio, show_mel], [chatbot, state, show_mel, outaudio, outvideo, run_button]) | |
clear_txt.click(bot.memory.clear) | |
clear_txt.click(lambda: [], None, chatbot) | |
clear_txt.click(lambda: [], None, state) | |
clear_txt.click(lambda:None, None, txt) | |
clear_txt.click(bot.clear_button, None, run_button) | |
clear_txt.click(bot.clear_image, None, show_mel) | |
clear_txt.click(bot.clear_audio, None, outaudio) | |
clear_txt.click(bot.clear_video, None, outvideo) | |
submit_btn.click(bot.speech, [speech_input, state], [speech_input, speech_output, state, outvideo]) | |
clear_speech.click(bot.clear_input_audio, None, speech_input) | |
clear_speech.click(bot.clear_audio, None, speech_output) | |
clear_speech.click(lambda: [], None, state) | |
clear_speech.click(bot.clear_video, None, outvideo) | |
demo.launch(server_name="0.0.0.0", server_port=7860) |