Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
from transformers import * | |
import warnings | |
warnings.filterwarnings('ignore') | |
# pretrained model name: (model class, model tokenizer, output dimension, token style) | |
MODELS = { | |
'prajjwal1/bert-mini': (BertModel, BertTokenizer), | |
} | |
class Text_Encoder(nn.Module): | |
def __init__(self, device): | |
super(Text_Encoder, self).__init__() | |
self.base_model = 'prajjwal1/bert-mini' | |
self.dropout = 0.1 | |
self.tokenizer = MODELS[self.base_model][1].from_pretrained(self.base_model) | |
self.bert_layer = MODELS[self.base_model][0].from_pretrained(self.base_model, | |
add_pooling_layer=False, | |
hidden_dropout_prob=self.dropout, | |
attention_probs_dropout_prob=self.dropout, | |
output_hidden_states=True) | |
self.linear_layer = nn.Sequential(nn.Linear(256, 256), nn.ReLU(inplace=True)) | |
self.device = device | |
def tokenize(self, caption): | |
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
tokenized = self.tokenizer(caption, add_special_tokens=False, padding=True, return_tensors='pt') | |
input_ids = tokenized['input_ids'] | |
attns_mask = tokenized['attention_mask'] | |
input_ids = input_ids.to(self.device) | |
attns_mask = attns_mask.to(self.device) | |
return input_ids, attns_mask | |
def forward(self, input_ids, attns_mask): | |
# input_ids, attns_mask = self.tokenize(caption) | |
output = self.bert_layer(input_ids=input_ids, attention_mask=attns_mask)[0] | |
cls_embed = output[:, 0, :] | |
text_embed = self.linear_layer(cls_embed) | |
return text_embed, output # text_embed: (batch, hidden_size) |