Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.express as px
|
5 |
+
import seaborn as sns
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
# Function to load JSONL file into a DataFrame
|
9 |
+
def load_jsonl(file_path):
|
10 |
+
data = []
|
11 |
+
with open(file_path, 'r') as f:
|
12 |
+
for line in f:
|
13 |
+
data.append(json.loads(line))
|
14 |
+
return pd.DataFrame(data)
|
15 |
+
|
16 |
+
# Function to filter DataFrame by keyword
|
17 |
+
def filter_by_keyword(df, keyword):
|
18 |
+
return df[df.apply(lambda row: row.astype(str).str.contains(keyword).any(), axis=1)]
|
19 |
+
|
20 |
+
# Load the data
|
21 |
+
small_data = load_jsonl("usmle_16.2MB.jsonl")
|
22 |
+
large_data = load_jsonl("usmle_2.08MB.jsonl")
|
23 |
+
|
24 |
+
# Streamlit App
|
25 |
+
st.title("EDA with Plotly and Seaborn 📊")
|
26 |
+
|
27 |
+
# Dropdown for file selection
|
28 |
+
file_option = st.selectbox("Select file:", ["small_file.jsonl", "large_file.jsonl"])
|
29 |
+
st.write(f"You selected: {file_option}")
|
30 |
+
|
31 |
+
# Show filtered data grid
|
32 |
+
if file_option == "small_file.jsonl":
|
33 |
+
data = small_data
|
34 |
+
else:
|
35 |
+
data = large_data
|
36 |
+
|
37 |
+
filtered_data = filter_by_keyword(data, "Heart")
|
38 |
+
st.write("Filtered Dataset by 'Heart'")
|
39 |
+
st.dataframe(filtered_data)
|
40 |
+
|
41 |
+
# Plotly and Seaborn charts for EDA
|
42 |
+
if st.button("Generate Charts"):
|
43 |
+
|
44 |
+
st.subheader("Plotly Charts 📈")
|
45 |
+
|
46 |
+
# 1. Scatter Plot
|
47 |
+
fig = px.scatter(data, x=data.columns[0], y=data.columns[1])
|
48 |
+
st.plotly_chart(fig)
|
49 |
+
|
50 |
+
# 2. Line Plot
|
51 |
+
fig = px.line(data, x=data.columns[0], y=data.columns[1])
|
52 |
+
st.plotly_chart(fig)
|
53 |
+
|
54 |
+
# 3. Bar Plot
|
55 |
+
fig = px.bar(data, x=data.columns[0], y=data.columns[1])
|
56 |
+
st.plotly_chart(fig)
|
57 |
+
|
58 |
+
# 4. Histogram
|
59 |
+
fig = px.histogram(data, x=data.columns[0])
|
60 |
+
st.plotly_chart(fig)
|
61 |
+
|
62 |
+
# 5. Box Plot
|
63 |
+
fig = px.box(data, x=data.columns[0], y=data.columns[1])
|
64 |
+
st.plotly_chart(fig)
|
65 |
+
|
66 |
+
st.subheader("Seaborn Charts 📊")
|
67 |
+
|
68 |
+
# 6. Violin Plot
|
69 |
+
fig, ax = plt.subplots()
|
70 |
+
sns.violinplot(x=data.columns[0], y=data.columns[1], data=data)
|
71 |
+
st.pyplot(fig)
|
72 |
+
|
73 |
+
# 7. Swarm Plot
|
74 |
+
fig, ax = plt.subplots()
|
75 |
+
sns.swarmplot(x=data.columns[0], y=data.columns[1], data=data)
|
76 |
+
st.pyplot(fig)
|
77 |
+
|
78 |
+
# 8. Pair Plot
|
79 |
+
fig = sns.pairplot(data)
|
80 |
+
st.pyplot(fig)
|
81 |
+
|
82 |
+
# 9. Heatmap
|
83 |
+
fig, ax = plt.subplots()
|
84 |
+
sns.heatmap(data.corr(), annot=True)
|
85 |
+
st.pyplot(fig)
|
86 |
+
|
87 |
+
# 10. Regplot (Regression Plot)
|
88 |
+
fig, ax = plt.subplots()
|
89 |
+
sns.regplot(x=data.columns[0], y=data.columns[1], data=data)
|
90 |
+
st.pyplot(fig)
|
91 |
+
|