|
import gradio as gr |
|
import pandas as pd |
|
import plotly.graph_objects as go |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset('text', data_files={'train': ['NPI_2023_01_17-05.10.57.PM.csv'], 'test': 'NPI_2023_01_17-05.10.57.PM.csv'}) |
|
|
|
datasetNYC = load_dataset("gradio/NYC-Airbnb-Open-Data", split="train") |
|
df = datasetNYC.to_pandas() |
|
|
|
def MatchText(pddf, name): |
|
pd.set_option("display.max_rows", None) |
|
data = pddf |
|
swith=data.loc[data['text'].str.contains(name, case=False, na=False)] |
|
return swith |
|
|
|
def getDatasetFind(findString): |
|
|
|
finder = dataset['train'].filter(lambda example: example['text'].find(findString)) |
|
finder = finder = finder.to_pandas() |
|
g1=MatchText(finder, findString) |
|
return g1 |
|
|
|
def filter_map(min_price, max_price, boroughs): |
|
filtered_df = df[(df['neighbourhood_group'].isin(boroughs)) & (df['price'] > min_price) & (df['price'] < max_price)] |
|
names = filtered_df["name"].tolist() |
|
prices = filtered_df["price"].tolist() |
|
text_list = [(names[i], prices[i]) for i in range(0, len(names))] |
|
|
|
fig = go.Figure(go.Scattermapbox( |
|
customdata=text_list, |
|
lat=filtered_df['latitude'].tolist(), |
|
lon=filtered_df['longitude'].tolist(), |
|
mode='markers', |
|
marker=go.scattermapbox.Marker( |
|
size=6 |
|
), |
|
hoverinfo="text", |
|
hovertemplate='Name: %{customdata[0]}Price: $%{customdata[1]}' |
|
)) |
|
|
|
fig.update_layout( |
|
mapbox_style="open-street-map", |
|
hovermode='closest', |
|
mapbox=dict( |
|
bearing=0, |
|
center=go.layout.mapbox.Center( |
|
lat=40.67, |
|
lon=-73.90 |
|
), |
|
pitch=0, |
|
zoom=9 |
|
), |
|
) |
|
return fig |
|
|
|
def centerMap(min_price, max_price, boroughs): |
|
filtered_df = df[(df['neighbourhood_group'].isin(boroughs)) & (df['price'] > min_price) & (df['price'] < max_price)] |
|
names = filtered_df["name"].tolist() |
|
prices = filtered_df["price"].tolist() |
|
text_list = [(names[i], prices[i]) for i in range(0, len(names))] |
|
|
|
latitude = 44.9382 |
|
longitude = -93.6561 |
|
|
|
fig = go.Figure(go.Scattermapbox( |
|
customdata=text_list, |
|
lat=filtered_df['latitude'].tolist(), |
|
lon=filtered_df['longitude'].tolist(), mode='markers', |
|
marker=go.scattermapbox.Marker( |
|
size=6 |
|
), |
|
hoverinfo="text", |
|
|
|
)) |
|
|
|
fig.update_layout( |
|
mapbox_style="open-street-map", |
|
hovermode='closest', |
|
mapbox=dict( |
|
bearing=0, |
|
center=go.layout.mapbox.Center( |
|
lat=latitude, |
|
lon=longitude |
|
), |
|
pitch=0, |
|
zoom=9 |
|
), |
|
) |
|
return fig |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
|
|
|
|
with gr.Row(): |
|
min_price = gr.Number(value=250, label="Minimum Price") |
|
max_price = gr.Number(value=1000, label="Maximum Price") |
|
boroughs = gr.CheckboxGroup(choices=["Queens", "Brooklyn", "Manhattan", "Bronx", "Staten Island"], value=["Queens", "Brooklyn"], label="Select Boroughs:") |
|
btn = gr.Button(value="Update Filter") |
|
map = gr.Plot().style() |
|
|
|
|
|
with gr.Row(): |
|
df20 = gr.Textbox(lines=4, default="", label="Find Mental Health Provider e.g. City/State/Name/License:") |
|
btn2 = gr.Button(value="Find") |
|
with gr.Row(): |
|
df4 = gr.Dataframe(wrap=True, max_rows=10000, overflow_row_behaviour= "paginate") |
|
|
|
|
|
with gr.Row(): |
|
df2 = gr.Textbox(lines=1, default="Mound", label="Find City:") |
|
latitudeUI = gr.Textbox(lines=1, default="44.9382", label="Latitude:") |
|
longitudeUI = gr.Textbox(lines=1, default="-93.6561", label="Longitude:") |
|
btn3 = gr.Button(value="Lat-Long") |
|
|
|
demo.load(filter_map, [min_price, max_price, boroughs], map) |
|
|
|
btn.click(filter_map, [min_price, max_price, boroughs], map) |
|
btn2.click(getDatasetFind,df20,df4 ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
btn3.click(centerMap, [min_price, max_price, boroughs], map) |
|
|
|
demo.launch() |