Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
+
from llama_index.llms.ollama import Ollama
|
6 |
+
|
7 |
+
# Set up Ollama
|
8 |
+
os.system('curl -fsSL https://ollama.com/install.sh | sh')
|
9 |
+
os.system('ollama serve &')
|
10 |
+
os.system('sleep 5')
|
11 |
+
os.system('ollama pull llama3.2')
|
12 |
+
os.system('ollama pull llama3.2')
|
13 |
+
|
14 |
+
# Initialize embeddings and LLM
|
15 |
+
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")
|
16 |
+
llama = Ollama(
|
17 |
+
model="llama3.2",
|
18 |
+
request_timeout=1000,
|
19 |
+
)
|
20 |
+
|
21 |
+
def initialize_index():
|
22 |
+
"""Initialize the vector store index from PDF files in the data directory"""
|
23 |
+
# Load documents from the data directory
|
24 |
+
loader = SimpleDirectoryReader(
|
25 |
+
input_dir="data",
|
26 |
+
required_exts=[".pdf"]
|
27 |
+
)
|
28 |
+
documents = loader.load_data()
|
29 |
+
|
30 |
+
# Create index
|
31 |
+
index = VectorStoreIndex.from_documents(
|
32 |
+
documents,
|
33 |
+
embed_model=embeddings,
|
34 |
+
)
|
35 |
+
|
36 |
+
# Return query engine with Llama
|
37 |
+
return index.as_query_engine(llm=llama)
|
38 |
+
|
39 |
+
# Initialize the query engine at startup
|
40 |
+
query_engine = initialize_index()
|
41 |
+
|
42 |
+
def process_query(
|
43 |
+
message: str,
|
44 |
+
history: list[tuple[str, str]],
|
45 |
+
) -> str:
|
46 |
+
"""Process a query using the RAG system"""
|
47 |
+
try:
|
48 |
+
# Get response from the query engine
|
49 |
+
response = query_engine.query(
|
50 |
+
message,
|
51 |
+
streaming=True
|
52 |
+
)
|
53 |
+
return str(response)
|
54 |
+
except Exception as e:
|
55 |
+
return f"Error processing query: {str(e)}"
|
56 |
+
|
57 |
+
# Create the Gradio interface
|
58 |
+
demo = gr.ChatInterface(
|
59 |
+
process_query,
|
60 |
+
title="PDF Question Answering with RAG + Llama",
|
61 |
+
description="Ask questions about the content of the loaded PDF documents using Llama model",
|
62 |
+
examples=[
|
63 |
+
["What is Computer"],
|
64 |
+
],
|
65 |
+
cache_examples=False,
|
66 |
+
retry_btn=None,
|
67 |
+
undo_btn="Delete Previous",
|
68 |
+
clear_btn="Clear",
|
69 |
+
)
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
demo.launch()
|