Spaces:
Sleeping
Sleeping
import requests | |
from sentence_transformers import SentenceTransformer, CrossEncoder, util | |
import os, re | |
import torch | |
from rank_bm25 import BM25Okapi | |
from sklearn.feature_extraction import _stop_words | |
import string | |
import numpy as np | |
import pandas as pd | |
from newspaper import Article | |
import base64 | |
import docx2txt | |
from io import StringIO | |
from PyPDF2 import PdfFileReader | |
import validators | |
import nltk | |
import warnings | |
import streamlit as st | |
from PIL import Image | |
nltk.download('punkt') | |
from nltk import sent_tokenize | |
warnings.filterwarnings("ignore") | |
auth_token = os.environ.get("auth_token") | |
def extract_text_from_url(url: str): | |
'''Extract text from url''' | |
article = Article(url) | |
article.download() | |
article.parse() | |
# get text | |
text = article.text | |
# get article title | |
title = article.title | |
return title, text | |
def extract_text_from_file(file): | |
'''Extract text from uploaded file''' | |
# read text file | |
if file.type == "text/plain": | |
# To convert to a string based IO: | |
stringio = StringIO(file.getvalue().decode("cp1252")) | |
# To read file as string: | |
file_text = stringio.read() | |
return file_text, None | |
# read pdf file | |
elif file.type == "application/pdf": | |
pdfReader = PdfFileReader(file) | |
count = pdfReader.numPages | |
all_text = "" | |
pdf_title = pdfReader.getDocumentInfo().title | |
for i in range(count): | |
try: | |
page = pdfReader.getPage(i) | |
all_text += page.extractText() | |
except: | |
continue | |
file_text = all_text | |
return file_text, pdf_title | |
# read docx file | |
elif ( | |
file.type | |
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document" | |
): | |
file_text = docx2txt.process(file) | |
return file_text, None | |
def preprocess_plain_text(text,window_size=3): | |
text = text.encode("ascii", "ignore").decode() # unicode | |
text = re.sub(r"https*\S+", " ", text) # url | |
text = re.sub(r"@\S+", " ", text) # mentions | |
text = re.sub(r"#\S+", " ", text) # hastags | |
text = re.sub(r"\s{2,}", " ", text) # over spaces | |
#text = re.sub("[^.,!?%$A-Za-z0-9]+", " ", text) # special characters except .,!? | |
#break into lines and remove leading and trailing space on each | |
lines = [line.strip() for line in text.splitlines()] | |
# #break multi-headlines into a line each | |
chunks = [phrase.strip() for line in lines for phrase in line.split(" ")] | |
# # drop blank lines | |
text = '\n'.join(chunk for chunk in chunks if chunk) | |
## We split this article into paragraphs and then every paragraph into sentences | |
paragraphs = [] | |
for paragraph in text.replace('\n',' ').split("\n\n"): | |
if len(paragraph.strip()) > 0: | |
paragraphs.append(sent_tokenize(paragraph.strip())) | |
#We combine up to 3 sentences into a passage. You can choose smaller or larger values for window_size | |
#Smaller value: Context from other sentences might get lost | |
#Lager values: More context from the paragraph remains, but results are longer | |
window_size = window_size | |
passages = [] | |
for paragraph in paragraphs: | |
for start_idx in range(0, len(paragraph), window_size): | |
end_idx = min(start_idx+window_size, len(paragraph)) | |
passages.append(" ".join(paragraph[start_idx:end_idx])) | |
st.write(f"Sentences: {sum([len(p) for p in paragraphs])}") | |
st.write(f"Passages: {len(passages)}") | |
return passages | |
def bi_encode(bi_enc,passages): | |
global bi_encoder | |
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search | |
bi_encoder = SentenceTransformer(bi_enc,use_auth_token=auth_token) | |
#quantize the model | |
#bi_encoder = quantize_dynamic(model, {Linear, Embedding}) | |
#Compute the embeddings using the multi-process pool | |
with st.spinner('Encoding passages into a vector space...'): | |
if bi_enc == 'intfloat/e5-base': | |
corpus_embeddings = bi_encoder.encode(['passage: ' + sentence for sentence in passages], convert_to_tensor=True) | |
else: | |
corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True) | |
st.success(f"Embeddings computed. Shape: {corpus_embeddings.shape}") | |
return bi_encoder, corpus_embeddings | |
def cross_encode(): | |
global cross_encoder | |
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality | |
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2') | |
return cross_encoder | |
def bm25_tokenizer(text): | |
# We also compare the results to lexical search (keyword search). Here, we use | |
# the BM25 algorithm which is implemented in the rank_bm25 package. | |
# We lower case our text and remove stop-words from indexing | |
tokenized_doc = [] | |
for token in text.lower().split(): | |
token = token.strip(string.punctuation) | |
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS: | |
tokenized_doc.append(token) | |
return tokenized_doc | |
def bm25_api(passages): | |
tokenized_corpus = [] | |
for passage in passages: | |
tokenized_corpus.append(bm25_tokenizer(passage)) | |
bm25 = BM25Okapi(tokenized_corpus) | |
return bm25 | |
bi_enc_options = ["multi-qa-mpnet-base-dot-v1","all-mpnet-base-v2","multi-qa-MiniLM-L6-cos-v1",'intfloat/e5-base',"neeva/query2query"] | |
def display_df_as_table(model,top_k,score='score'): | |
# Display the df with text and scores as a table | |
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text']) | |
df['Score'] = round(df['Score'],2) | |
return df | |
#Streamlit App | |
st.title("Semantic Search with Retrieve & Rerank 📝") | |
""" | |
[![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi) | |
""" | |
window_size = st.sidebar.slider("Paragraph Window Size",min_value=1,max_value=10,value=3,key= | |
'slider') | |
bi_encoder_type = st.sidebar.selectbox("Bi-Encoder", options=bi_enc_options, key='sbox') | |
top_k = st.sidebar.slider("Number of Top Hits Generated",min_value=1,max_value=5,value=2) | |
# This function will search all wikipedia articles for passages that | |
# answer the query | |
def search_func(query, top_k=top_k, bi_encoder_type): | |
global bi_encoder, cross_encoder | |
st.subheader(f"Search Query: {query}") | |
if url_text: | |
st.write(f"Document Header: {title}") | |
elif pdf_title: | |
st.write(f"Document Header: {pdf_title}") | |
##### BM25 search (lexical search) ##### | |
bm25_scores = bm25.get_scores(bm25_tokenizer(query)) | |
top_n = np.argpartition(bm25_scores, -5)[-5:] | |
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n] | |
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True) | |
st.subheader(f"Top-{top_k} lexical search (BM25) hits") | |
bm25_df = display_df_as_table(bm25_hits,top_k) | |
st.write(bm25_df.to_html(index=False), unsafe_allow_html=True) | |
if bi_encoder_type == 'intfloat/e5-base': | |
query = 'query: ' + query | |
##### Sematic Search ##### | |
# Encode the query using the bi-encoder and find potentially relevant passages | |
question_embedding = bi_encoder.encode(query, convert_to_tensor=True) | |
question_embedding = question_embedding.cpu() | |
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k,score_function=util.dot_score) | |
hits = hits[0] # Get the hits for the first query | |
##### Re-Ranking ##### | |
# Now, score all retrieved passages with the cross_encoder | |
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits] | |
cross_scores = cross_encoder.predict(cross_inp) | |
# Sort results by the cross-encoder scores | |
for idx in range(len(cross_scores)): | |
hits[idx]['cross-score'] = cross_scores[idx] | |
# Output of top-3 hits from bi-encoder | |
st.markdown("\n-------------------------\n") | |
st.subheader(f"Top-{top_k} Bi-Encoder Retrieval hits") | |
hits = sorted(hits, key=lambda x: x['score'], reverse=True) | |
cross_df = display_df_as_table(hits,top_k) | |
st.write(cross_df.to_html(index=False), unsafe_allow_html=True) | |
# Output of top-3 hits from re-ranker | |
st.markdown("\n-------------------------\n") | |
st.subheader(f"Top-{top_k} Cross-Encoder Re-ranker hits") | |
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) | |
rerank_df = display_df_as_table(hits,top_k,'cross-score') | |
st.write(rerank_df.to_html(index=False), unsafe_allow_html=True) | |
st.markdown( | |
""" | |
- The app supports asymmetric Semantic search which seeks to improve search accuracy of documents/URL by understanding the content of the search query in contrast to traditional search engines which only find documents based on lexical matches. | |
- The idea behind semantic search is to embed all entries in your corpus, whether they be sentences, paragraphs, or documents, into a vector space. At search time, the query is embedded into the same vector space and the closest embeddings from your corpus are found. These entries should have a high semantic overlap with the query. | |
- The all-* models where trained on all available training data (more than 1 billion training pairs) and are designed as general purpose models. The all-mpnet-base-v2 model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality. The models used have been trained on broad datasets, however, if your document/corpus is specialised, such as for science or economics, the results returned might be unsatisfactory.""") | |
st.markdown("""There models available to choose from:""") | |
st.markdown( | |
""" | |
Model Source: | |
- Bi-Encoders - [multi-qa-mpnet-base-dot-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1), [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2), [multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1) and [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | |
- Cross-Encoder - [cross-encoder/ms-marco-MiniLM-L-12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2)""") | |
st.markdown( | |
""" | |
Code and App Inspiration Source: [Sentence Transformers](https://www.sbert.net/examples/applications/retrieve_rerank/README.html)""") | |
st.markdown( | |
""" | |
Quick summary of the purposes of a Bi and Cross-encoder below, the image and info were adapted from [www.sbert.net](https://www.sbert.net/examples/applications/semantic-search/README.html):""") | |
st.markdown( | |
""" | |
- Bi-Encoder (Retrieval): The Bi-encoder is responsible for independently embedding the sentences and search queries into a vector space. The result is then passed to the cross-encoder for checking the relevance/similarity between the query and sentences. | |
- Cross-Encoder (Re-Ranker): A re-ranker based on a Cross-Encoder can substantially improve the final results for the user. The query and a possible document is passed simultaneously to transformer network, which then outputs a single score between 0 and 1 indicating how relevant the document is for the given query. The cross-encoder further boost the performance, especially when you search over a corpus for which the bi-encoder was not trained for.""") | |
st.image(Image.open('encoder.png'), caption='Retrieval and Re-Rank') | |
st.markdown(""" | |
In order to use the app: | |
- Select the preferred Sentence Transformer model (Bi-Encoder). | |
- Select the number of sentences per paragraph to partition your corpus (Window-Size), if you choose a small value the context from the other sentences might get lost and for larger values the results might take longer to generate. | |
- Select the number of top hits to be generated. | |
- Paste the URL with your corpus or upload your preferred document in txt, pdf or Word format. | |
- Semantic Search away!! """ | |
) | |
st.markdown("---") | |
def clear_text(): | |
st.session_state["text_url"] = "" | |
st.session_state["text_input"]= "" | |
def clear_search_text(): | |
st.session_state["text_input"]= "" | |
url_text = st.text_input("Please Enter a url here",value="https://www.rba.gov.au/monetary-policy/rba-board-minutes/2022/2022-05-03.html",key='text_url',on_change=clear_search_text) | |
st.markdown( | |
"<h3 style='text-align: center; color: red;'>OR</h3>", | |
unsafe_allow_html=True, | |
) | |
upload_doc = st.file_uploader("Upload a .txt, .pdf, .docx file",key="upload") | |
search_query = st.text_input("Please Enter your search query here",value="What are the expectations for inflation for Australia?",key="text_input") | |
if validators.url(url_text): | |
#if input is URL | |
title, text = extract_text_from_url(url_text) | |
passages = preprocess_plain_text(text,window_size=window_size) | |
elif upload_doc: | |
text, pdf_title = extract_text_from_file(upload_doc) | |
passages = preprocess_plain_text(text,window_size=window_size) | |
col1, col2 = st.columns(2) | |
with col1: | |
search = st.button("Search",key='search_but', help='Click to Search!!') | |
with col2: | |
clear = st.button("Clear Text Input", on_click=clear_text,key='clear',help='Click to clear the URL input and search query') | |
if search: | |
if bi_encoder_type: | |
with st.spinner( | |
text=f"Loading {bi_encoder_type} bi-encoder and embedding document into vector space. This might take a few seconds depending on the length of your document..." | |
): | |
bi_encoder, corpus_embeddings = bi_encode(bi_encoder_type,passages) | |
cross_encoder = cross_encode() | |
bm25 = bm25_api(passages) | |
with st.spinner( | |
text="Embedding completed, searching for relevant text for given query and hits..."): | |
search_func(search_query,top_k) | |
st.markdown(""" | |
""") | |
st.markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-semantic-search-with-retrieve-and-rerank)") |