Run_code_api / src /model_convert /wav2vec2onnx.py
ABAO77's picture
Add Wav2Vec2 model conversion and inference to ONNX format
df380ff
raw
history blame
14 kB
import torch
import onnx
import onnxruntime
import numpy as np
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from typing import Dict, Tuple
import librosa
import os
class Wav2Vec2ONNXConverter:
"""Convert Wav2Vec2 model to ONNX format"""
def __init__(self, model_name: str = "facebook/wav2vec2-base-960h"):
"""Initialize the converter with the specified model"""
print(f"Loading Wav2Vec2 model: {model_name}")
self.model_name = model_name
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
# Disable flash attention and scaled_dot_product_attention for ONNX compatibility
if hasattr(self.model.config, 'use_flash_attention_2'):
self.model.config.use_flash_attention_2 = False
# Force model to use standard attention
if hasattr(self.model, 'wav2vec2') and hasattr(self.model.wav2vec2, 'encoder'):
for layer in self.model.wav2vec2.encoder.layers:
if hasattr(layer.attention, 'attention_dropout'):
# Ensure standard attention is used
layer.attention.attention_dropout = torch.nn.Dropout(layer.attention.attention_dropout.p)
self.model.eval()
self.sample_rate = 16000
print("Model loaded successfully")
def convert_to_onnx(self,
onnx_path: str = "wav2vec2_model.onnx",
input_length: int = 160000, # 10 seconds at 16kHz
opset_version: int = 14) -> str:
"""
Convert the Wav2Vec2 model to ONNX format
Args:
onnx_path: Path to save the ONNX model
input_length: Length of input audio (samples)
opset_version: ONNX opset version
Returns:
Path to the saved ONNX model
"""
print(f"Converting model to ONNX format...")
# Create dummy input
dummy_input = torch.randn(1, input_length, dtype=torch.float32)
# Input names and dynamic axes
input_names = ["input_values"]
output_names = ["logits"]
# Dynamic axes for variable length input
dynamic_axes = {
"input_values": {0: "batch_size", 1: "sequence_length"},
"logits": {0: "batch_size", 1: "sequence_length"}
}
try:
# Disable torch optimizations that may cause ONNX issues
with torch.no_grad():
# Set model to evaluation mode and disable dropout
self.model.eval()
for module in self.model.modules():
if isinstance(module, torch.nn.Dropout):
module.p = 0.0
# Export to ONNX
torch.onnx.export(
self.model,
dummy_input,
onnx_path,
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
opset_version=opset_version,
do_constant_folding=True,
verbose=False,
export_params=True,
training=torch.onnx.TrainingMode.EVAL,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX
)
print(f"Model successfully exported to: {onnx_path}")
# Verify the exported model
self._verify_onnx_model(onnx_path, dummy_input)
return onnx_path
except Exception as e:
print(f"Error during ONNX conversion: {e}")
raise
def _verify_onnx_model(self, onnx_path: str, test_input: torch.Tensor):
"""Verify the exported ONNX model"""
print("Verifying ONNX model...")
try:
# Load and check ONNX model
onnx_model = onnx.load(onnx_path)
onnx.checker.check_model(onnx_model)
print("✓ ONNX model structure is valid")
# Test inference with ONNX Runtime
ort_session = onnxruntime.InferenceSession(onnx_path)
# Get model input/output info
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name
print(f"✓ Input name: {input_name}")
print(f"✓ Output name: {output_name}")
# Run inference
ort_inputs = {input_name: test_input.numpy()}
ort_outputs = ort_session.run([output_name], ort_inputs)
# Compare with original PyTorch model
with torch.no_grad():
torch_output = self.model(test_input)
torch_logits = torch_output.logits
# Check output similarity
onnx_logits = ort_outputs[0]
max_diff = np.max(np.abs(torch_logits.numpy() - onnx_logits))
print(f"✓ Maximum difference between PyTorch and ONNX: {max_diff:.6f}")
if max_diff < 1e-4:
print("✓ ONNX model verification successful!")
else:
print("⚠ Warning: Large difference detected between models")
except Exception as e:
print(f"Error during verification: {e}")
raise
class Wav2Vec2ONNXInference:
"""ONNX inference class for Wav2Vec2"""
def __init__(self, onnx_path: str, processor_name: str = "facebook/wav2vec2-base-960h"):
"""Initialize ONNX inference"""
print(f"Loading ONNX model from: {onnx_path}")
# Load processor for tokenization
self.processor = Wav2Vec2Processor.from_pretrained(processor_name)
# Create ONNX Runtime session
self.session = onnxruntime.InferenceSession(onnx_path)
self.input_name = self.session.get_inputs()[0].name
self.output_name = self.session.get_outputs()[0].name
self.sample_rate = 16000
print("ONNX model loaded successfully")
def transcribe(self, audio_path: str) -> Dict:
"""Transcribe audio using ONNX model"""
try:
# Load audio
speech, sr = librosa.load(audio_path, sr=self.sample_rate)
# Prepare input
input_values = self.processor(
speech,
sampling_rate=self.sample_rate,
return_tensors="np"
).input_values
# Run ONNX inference
ort_inputs = {self.input_name: input_values}
ort_outputs = self.session.run([self.output_name], ort_inputs)
logits = ort_outputs[0]
# Decode predictions
predicted_ids = np.argmax(logits, axis=-1)
transcription = self.processor.batch_decode(predicted_ids)[0]
# Calculate confidence scores
confidence_scores = np.max(self._softmax(logits), axis=-1)[0]
return {
"transcription": transcription,
"confidence_scores": confidence_scores[:100].tolist(), # Limit for JSON
"predicted_ids": predicted_ids[0].tolist()
}
except Exception as e:
print(f"Transcription error: {e}")
return {
"transcription": "",
"confidence_scores": [],
"predicted_ids": []
}
def _softmax(self, x):
"""Apply softmax to logits"""
exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
return exp_x / np.sum(exp_x, axis=-1, keepdims=True)
# Example usage and testing
def main():
"""Example usage of the converter"""
# Method 1: Try standard conversion
try:
print("Method 1: Standard conversion...")
converter = Wav2Vec2ONNXConverter("facebook/wav2vec2-base-960h")
onnx_path = converter.convert_to_onnx(
onnx_path="wav2vec2_asr.onnx",
input_length=160000, # 10 seconds
opset_version=14 # Updated to version 14 for compatibility
)
print("✓ Standard conversion successful!")
except Exception as e:
print(f"✗ Standard conversion failed: {e}")
print("\nMethod 2: Trying fallback approach...")
try:
# Method 2: Use compatible model creation
model, processor = create_compatible_model("facebook/wav2vec2-base-960h")
onnx_path = export_with_fallback(
model,
processor,
"wav2vec2_asr_fallback.onnx",
input_length=160000
)
print("✓ Fallback conversion successful!")
except Exception as e2:
print(f"✗ All conversion methods failed: {e2}")
return
# Test ONNX inference
print("\nTesting ONNX inference...")
try:
onnx_inference = Wav2Vec2ONNXInference(onnx_path)
print("✓ ONNX model loaded successfully for inference")
# Create a test audio file (or use your own)
# result = onnx_inference.transcribe("test_audio.wav")
# print("Transcription:", result["transcription"])
except Exception as e:
print(f"✗ ONNX inference test failed: {e}")
print("Conversion process completed!")
# Additional utility functions
def create_compatible_model(model_name: str = "facebook/wav2vec2-base-960h"):
"""Create a Wav2Vec2 model compatible with ONNX export"""
from transformers import Wav2Vec2Config
# Load config and modify for ONNX compatibility
config = Wav2Vec2Config.from_pretrained(model_name)
# Disable features that may cause ONNX issues
if hasattr(config, 'use_flash_attention_2'):
config.use_flash_attention_2 = False
if hasattr(config, 'torch_dtype'):
config.torch_dtype = torch.float32
# Load model with modified config
model = Wav2Vec2ForCTC.from_pretrained(model_name, config=config, torch_dtype=torch.float32)
processor = Wav2Vec2Processor.from_pretrained(model_name)
return model, processor
def export_with_fallback(model, processor, onnx_path: str, input_length: int = 160000):
"""Export model with fallback options for different opset versions"""
dummy_input = torch.randn(1, input_length, dtype=torch.float32)
input_names = ["input_values"]
output_names = ["logits"]
dynamic_axes = {
"input_values": {0: "batch_size", 1: "sequence_length"},
"logits": {0: "batch_size", 1: "sequence_length"}
}
# Try different opset versions
opset_versions = [14, 13, 12, 11]
for opset_version in opset_versions:
try:
print(f"Trying ONNX export with opset version {opset_version}...")
with torch.no_grad():
model.eval()
# Disable all dropouts
for module in model.modules():
if isinstance(module, torch.nn.Dropout):
module.p = 0.0
torch.onnx.export(
model,
dummy_input,
onnx_path,
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
opset_version=opset_version,
do_constant_folding=True,
verbose=False,
export_params=True,
training=torch.onnx.TrainingMode.EVAL
)
print(f"✓ Successfully exported with opset version {opset_version}")
return onnx_path
except Exception as e:
print(f"✗ Failed with opset {opset_version}: {str(e)[:100]}...")
continue
raise Exception("Failed to export with all attempted opset versions")
def optimize_onnx_model(onnx_path: str, optimized_path: str = None):
"""Optimize ONNX model for inference"""
try:
from onnxruntime.tools import optimizer
if optimized_path is None:
optimized_path = onnx_path.replace(".onnx", "_optimized.onnx")
# Optimize model
opt_model = optimizer.optimize_model(
onnx_path,
model_type="bert", # Similar architecture
num_heads=12,
hidden_size=768
)
opt_model.save_model_to_file(optimized_path)
print(f"Optimized model saved to: {optimized_path}")
return optimized_path
except ImportError:
print("ONNX Runtime tools not available for optimization")
return onnx_path
except Exception as e:
print(f"Optimization error: {e}")
return onnx_path
def compare_models(original_converter, onnx_inference, test_audio_path: str):
"""Compare PyTorch and ONNX model outputs"""
print("Comparing PyTorch vs ONNX outputs...")
# PyTorch inference
torch_result = original_converter.transcribe_to_characters(test_audio_path)
# ONNX inference
onnx_result = onnx_inference.transcribe(test_audio_path)
print(f"PyTorch transcription: {torch_result['character_transcript']}")
print(f"ONNX transcription: {onnx_result['transcription']}")
# Compare similarity
if torch_result['character_transcript'] == onnx_result['transcription']:
print("✓ Transcriptions match exactly!")
else:
print("⚠ Transcriptions differ")
if __name__ == "__main__":
main()