Spaces:
Running
Running
Add Wav2Vec2 model conversion and inference to ONNX format
Browse files- Implemented Wav2Vec2ONNXConverter class for converting Wav2Vec2 models to ONNX format, including model loading, conversion, and verification.
- Added Wav2Vec2ONNXInference class for performing inference using the converted ONNX model.
- Included methods for softmax calculation and transcription of audio files.
- Added utility functions for creating compatible models and exporting with fallback options for different ONNX opset versions.
- Introduced optimization function for ONNX models.
- Created helper function to convert numpy types to native Python types for better compatibility.
- .gitignore +2 -1
- EVALUATION_CAROUSEL_UPDATES.md +0 -0
- HYDRATION_ERROR_FIXES.md +0 -0
- LESSON_PRACTICE_2_UPDATES.md +0 -95
- requirements.txt +6 -1
- src/apis/__pycache__/create_app.cpython-311.pyc +0 -0
- src/apis/controllers/speaking_controller.py +1004 -0
- src/apis/routes/speaking_route.py +73 -786
- src/model_convert/wav2vec2onnx.py +373 -0
- src/utils/helper.py +17 -0
.gitignore
CHANGED
@@ -19,4 +19,5 @@ data_test
|
|
19 |
**.tiff
|
20 |
**.webp
|
21 |
**.svg
|
22 |
-
.serena
|
|
|
|
19 |
**.tiff
|
20 |
**.webp
|
21 |
**.svg
|
22 |
+
.serena
|
23 |
+
**.onnx
|
EVALUATION_CAROUSEL_UPDATES.md
DELETED
File without changes
|
HYDRATION_ERROR_FIXES.md
DELETED
File without changes
|
LESSON_PRACTICE_2_UPDATES.md
DELETED
@@ -1,95 +0,0 @@
|
|
1 |
-
# Cập nhật Lesson Practice 2 Agent - Tóm tắt thay đổi
|
2 |
-
|
3 |
-
## Mục tiêu
|
4 |
-
Điều chỉnh `lesson_practice_2` agent để:
|
5 |
-
- **Teaching Agent** trở thành agent mặc định (thay vì Practice Agent)
|
6 |
-
- Tạo trải nghiệm học tập tự nhiên và thu hút
|
7 |
-
- **Responses ngắn gọn và tương tác** - không quá dài làm người dùng nản
|
8 |
-
- Chuyển đổi mượt mà giữa teaching và practice mode
|
9 |
-
- Người dùng cảm thấy thoải mái và muốn tương tác nhiều hơn
|
10 |
-
|
11 |
-
## Thay đổi chính
|
12 |
-
|
13 |
-
### 1. Agent mặc định (func.py)
|
14 |
-
- **Trước**: `state["active_agent"] = "Practice Agent"`
|
15 |
-
- **Sau**: `state["active_agent"] = "Teaching Agent"`
|
16 |
-
- **Lý do**: Bắt đầu với việc dạy và hướng dẫn trước khi thực hành
|
17 |
-
|
18 |
-
### 2. Teaching Agent Prompt (prompt.py)
|
19 |
-
#### Cải thiện chính:
|
20 |
-
- **Triết lý dạy học tự nhiên**: Bắt đầu từ level hiện tại, xây dựng tự tin từ từ
|
21 |
-
- **Linh hoạt ngôn ngữ**: Tiếng Việt khi cần, tiếng Anh khi có thể
|
22 |
-
- **Phong cách thu hút**: Nhiệt tình, kiên nhẫn, khuyến khích với humor nhẹ nhàng
|
23 |
-
- **Responses ngắn gọn**: 10-20 từ tối đa, một câu hỏi, tập trung vào tương tác
|
24 |
-
- **Phương pháp dạy tương tác**: Một khái niệm/lần, hỏi input ngay, không giải thích quá nhiều
|
25 |
-
- **Xử lý lỗi nhanh**: Sửa ngắn gọn, khuyến khích thử lại ngay
|
26 |
-
- **Ví dụ cụ thể**: Có examples về responses tốt vs nên tránh
|
27 |
-
|
28 |
-
### 3. Practice Agent Prompt (prompt.py)
|
29 |
-
#### Cải thiện chính:
|
30 |
-
- **Đối tác hội thoại tự nhiên**: Tập trung vào giao tiếp thay vì hoàn hảo
|
31 |
-
- **Responses cực ngắn**: 1-2 câu tối đa, một câu hỏi hay
|
32 |
-
- **Phong cách partner**: Quan tâm thực sự, không điền đầy mọi khoảng trống
|
33 |
-
- **Khuyến khích tham gia**: Tạo không gian cho họ chia sẻ thêm
|
34 |
-
- **Ví dụ responses**: Examples về cách trả lời ngắn gọn nhưng hấp dẫn
|
35 |
-
|
36 |
-
### 4. Logic chuyển đổi (func.py)
|
37 |
-
#### Teaching → Practice:
|
38 |
-
- Người dùng thể hiện hiểu biết và tự tin
|
39 |
-
- Yêu cầu thực hành hội thoại
|
40 |
-
- Sẵn sàng cho giao tiếp tiếng Anh
|
41 |
-
|
42 |
-
#### Practice → Teaching:
|
43 |
-
- Cần giải thích ngữ pháp chi tiết
|
44 |
-
- Lỗi cơ bản lặp lại nhiều lần
|
45 |
-
- Yêu cầu hỗ trợ có cấu trúc hơn
|
46 |
-
|
47 |
-
### 5. Flow routing (flow.py)
|
48 |
-
- Thêm fallback logic: mặc định về Teaching Agent nếu không có active agent
|
49 |
-
|
50 |
-
## Lợi ích của thay đổi
|
51 |
-
|
52 |
-
### Trải nghiệm người học:
|
53 |
-
1. **Bắt đầu thoải mái**: Teaching agent tạo môi trường an toàn để học
|
54 |
-
2. **Tương tác cao**: Responses ngắn gọn, luôn có câu hỏi khuyến khích tham gia
|
55 |
-
3. **Không bị overwhelm**: Không quá nhiều thông tin một lúc
|
56 |
-
4. **Linh hoạt ngôn ngữ**: Dùng tiếng Việt khi cần, tiếng Anh khi có thể
|
57 |
-
5. **Chuyển đổi tự nhiên**: Khi sẵn sàng, được khuyến khích thực hành
|
58 |
-
6. **Partner thực sự**: Practice mode như nói chuyện với bạn thật, câu trả lời ngắn gọn
|
59 |
-
|
60 |
-
### Hiệu quả giáo dục:
|
61 |
-
1. **Học có cấu trúc**: Dạy trước, luyện sau, từng bước nhỏ
|
62 |
-
2. **Động lực cao**: Môi trường vui vẻ, không áp lực, luôn được khuyến khích tham gia
|
63 |
-
3. **Duy trì sự chú ý**: Responses ngắn giúp người học không bị mệt mỏi
|
64 |
-
4. **Tương tác liên tục**: Luôn có cơ hội để người học phản hồi
|
65 |
-
5. **Ứng dụng thực tế**: Tập trung vào giao tiếp thực tế
|
66 |
-
6. **Tự tin giao tiếp**: Chuẩn bị kỹ trước khi thực hành
|
67 |
-
|
68 |
-
## Cách sử dụng
|
69 |
-
|
70 |
-
1. **Bắt đầu**: Teaching Agent sẽ chào và bắt đầu dạy
|
71 |
-
2. **Học tập**: Giải thích, luyện tập với hỗ trợ và khuyến khích
|
72 |
-
3. **Sẵn sàng**: Khi tự tin, Teaching Agent sẽ chuyển sang Practice Agent
|
73 |
-
4. **Thực hành**: Hội thoại tự nhiên với Practice Agent
|
74 |
-
5. **Hỗ trợ**: Nếu cần giúp, Practice Agent chuyển về Teaching Agent
|
75 |
-
|
76 |
-
## Kết quả mong đợi
|
77 |
-
- Người học cảm thấy thoải mái và được hỗ trợ
|
78 |
-
- **Luôn muốn tương tác thêm** vì responses ngắn gọn, dễ đọc
|
79 |
-
- Quá trình học tự nhiên và không áp lực
|
80 |
-
- **Không bị overwhelm** bởi thông tin quá nhiều
|
81 |
-
- Chuyển đổi mượt mà giữa học và thực hành
|
82 |
-
- Động lực cao và muốn tiếp tục học
|
83 |
-
- Giao tiếp tiếng Anh tự tin và tự nhiên
|
84 |
-
|
85 |
-
## Ví dụ Response Style
|
86 |
-
|
87 |
-
### Teaching Agent:
|
88 |
-
❌ **Tránh**: "That's excellent! You're really making great progress with past tense. Let me explain how irregular verbs work in English. There are many irregular verbs like 'go-went', 'see-saw', 'have-had'..."
|
89 |
-
|
90 |
-
✅ **Tốt**: "Good try! Use **went** instead. Can you try again?"
|
91 |
-
|
92 |
-
### Practice Agent:
|
93 |
-
❌ **Tránh**: "That sounds like a really interesting experience! I'd love to hear more about what happened next and how you felt about the whole situation. It must have been quite exciting for you!"
|
94 |
-
|
95 |
-
✅ **Tốt**: "Wow, sounds exciting! What happened next?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -17,4 +17,9 @@ deepgram-sdk
|
|
17 |
whisper-openai
|
18 |
nltk
|
19 |
librosa
|
20 |
-
eng-to-ipa
|
|
|
|
|
|
|
|
|
|
|
|
17 |
whisper-openai
|
18 |
nltk
|
19 |
librosa
|
20 |
+
eng-to-ipa
|
21 |
+
onnxruntime
|
22 |
+
onnx
|
23 |
+
transformers
|
24 |
+
torch
|
25 |
+
optimum[onnxruntime]
|
src/apis/__pycache__/create_app.cpython-311.pyc
CHANGED
Binary files a/src/apis/__pycache__/create_app.cpython-311.pyc and b/src/apis/__pycache__/create_app.cpython-311.pyc differ
|
|
src/apis/controllers/speaking_controller.py
ADDED
@@ -0,0 +1,1004 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, APIRouter
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from typing import List, Dict, Optional
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
+
import numpy as np
|
8 |
+
import librosa
|
9 |
+
import nltk
|
10 |
+
import eng_to_ipa as ipa
|
11 |
+
import torch
|
12 |
+
import re
|
13 |
+
from collections import defaultdict
|
14 |
+
import warnings
|
15 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
16 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
17 |
+
from optimum.onnxruntime import ORTModelForSpeechSeq2Seq
|
18 |
+
from loguru import logger
|
19 |
+
import onnxruntime
|
20 |
+
|
21 |
+
warnings.filterwarnings("ignore")
|
22 |
+
|
23 |
+
# Download required NLTK data
|
24 |
+
try:
|
25 |
+
nltk.download("cmudict", quiet=True)
|
26 |
+
from nltk.corpus import cmudict
|
27 |
+
except:
|
28 |
+
print("Warning: NLTK data not available")
|
29 |
+
|
30 |
+
|
31 |
+
class WhisperASR:
|
32 |
+
"""Whisper ASR for normal mode pronunciation assessment"""
|
33 |
+
|
34 |
+
def __init__(self, model_name: str = "openai/whisper-base.en"):
|
35 |
+
"""
|
36 |
+
Initialize Whisper model for normal mode
|
37 |
+
|
38 |
+
Args:
|
39 |
+
model_name: HuggingFace model name for Whisper
|
40 |
+
"""
|
41 |
+
print(f"Loading Whisper model: {model_name}")
|
42 |
+
|
43 |
+
try:
|
44 |
+
# Try ONNX first
|
45 |
+
self.processor = WhisperProcessor.from_pretrained(model_name)
|
46 |
+
self.model = ORTModelForSpeechSeq2Seq.from_pretrained(
|
47 |
+
model_name,
|
48 |
+
export=True,
|
49 |
+
provider="CPUExecutionProvider",
|
50 |
+
)
|
51 |
+
self.model_type = "ONNX"
|
52 |
+
print("Whisper ONNX model loaded successfully")
|
53 |
+
except:
|
54 |
+
# Fallback to PyTorch
|
55 |
+
self.processor = WhisperProcessor.from_pretrained(model_name)
|
56 |
+
self.model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
57 |
+
self.model_type = "PyTorch"
|
58 |
+
print("Whisper PyTorch model loaded successfully")
|
59 |
+
|
60 |
+
self.model_name = model_name
|
61 |
+
self.sample_rate = 16000
|
62 |
+
|
63 |
+
def transcribe_to_text(self, audio_path: str) -> Dict:
|
64 |
+
"""
|
65 |
+
Transcribe audio to text using Whisper
|
66 |
+
Returns transcript and confidence score
|
67 |
+
"""
|
68 |
+
try:
|
69 |
+
# Load audio
|
70 |
+
audio, sr = librosa.load(audio_path, sr=self.sample_rate)
|
71 |
+
|
72 |
+
# Process audio
|
73 |
+
inputs = self.processor(audio, sampling_rate=16000, return_tensors="pt")
|
74 |
+
|
75 |
+
# Set language to English
|
76 |
+
forced_decoder_ids = self.processor.get_decoder_prompt_ids(
|
77 |
+
language="en", task="transcribe"
|
78 |
+
)
|
79 |
+
|
80 |
+
# Generate transcription
|
81 |
+
with torch.no_grad():
|
82 |
+
predicted_ids = self.model.generate(
|
83 |
+
inputs["input_features"],
|
84 |
+
forced_decoder_ids=forced_decoder_ids,
|
85 |
+
max_new_tokens=200,
|
86 |
+
do_sample=False,
|
87 |
+
)
|
88 |
+
|
89 |
+
# Decode to text
|
90 |
+
transcript = self.processor.batch_decode(
|
91 |
+
predicted_ids, skip_special_tokens=True
|
92 |
+
)[0]
|
93 |
+
transcript = transcript.strip().lower()
|
94 |
+
|
95 |
+
# Convert to phoneme representation for comparison
|
96 |
+
g2p = SimpleG2P()
|
97 |
+
phoneme_representation = g2p.get_reference_phoneme_string(transcript)
|
98 |
+
|
99 |
+
return {
|
100 |
+
"character_transcript": transcript,
|
101 |
+
"phoneme_representation": phoneme_representation,
|
102 |
+
"confidence_scores": [0.8]
|
103 |
+
* len(transcript.split()), # Simple confidence
|
104 |
+
}
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
logger.error(f"Whisper transcription error: {e}")
|
108 |
+
return {
|
109 |
+
"character_transcript": "",
|
110 |
+
"phoneme_representation": "",
|
111 |
+
"confidence_scores": [],
|
112 |
+
}
|
113 |
+
|
114 |
+
def get_model_info(self) -> Dict:
|
115 |
+
"""Get information about the loaded Whisper model"""
|
116 |
+
return {
|
117 |
+
"model_name": self.model_name,
|
118 |
+
"model_type": self.model_type,
|
119 |
+
"sample_rate": self.sample_rate,
|
120 |
+
}
|
121 |
+
|
122 |
+
|
123 |
+
class Wav2Vec2CharacterASRONNX:
|
124 |
+
"""Wav2Vec2 character-level ASR with ONNX runtime - no language model correction"""
|
125 |
+
|
126 |
+
def __init__(
|
127 |
+
self,
|
128 |
+
onnx_model_path: str = "./wav2vec2_asr.onnx",
|
129 |
+
processor_name: str = "facebook/wav2vec2-base-960h",
|
130 |
+
):
|
131 |
+
"""
|
132 |
+
Initialize Wav2Vec2 ONNX character-level model
|
133 |
+
Automatically creates ONNX model if it doesn't exist
|
134 |
+
|
135 |
+
Args:
|
136 |
+
onnx_model_path: Path to the ONNX model file
|
137 |
+
processor_name: HuggingFace model name for the processor
|
138 |
+
"""
|
139 |
+
print(f"Loading Wav2Vec2 ONNX model from: {onnx_model_path}")
|
140 |
+
print(f"Loading processor: {processor_name}")
|
141 |
+
|
142 |
+
# Check if ONNX model exists, if not create it
|
143 |
+
if not os.path.exists(onnx_model_path):
|
144 |
+
print(f"ONNX model not found at {onnx_model_path}. Creating it...")
|
145 |
+
self._create_onnx_model(onnx_model_path, processor_name)
|
146 |
+
|
147 |
+
try:
|
148 |
+
# Load ONNX model
|
149 |
+
self.session = onnxruntime.InferenceSession(onnx_model_path)
|
150 |
+
self.input_name = self.session.get_inputs()[0].name
|
151 |
+
self.output_name = self.session.get_outputs()[0].name
|
152 |
+
|
153 |
+
# Load processor
|
154 |
+
self.processor = Wav2Vec2Processor.from_pretrained(processor_name)
|
155 |
+
|
156 |
+
print("ONNX Wav2Vec2 character model loaded successfully")
|
157 |
+
self.model_name = processor_name
|
158 |
+
self.onnx_path = onnx_model_path
|
159 |
+
self.sample_rate = 16000
|
160 |
+
|
161 |
+
except Exception as e:
|
162 |
+
print(f"Error loading ONNX model: {e}")
|
163 |
+
raise
|
164 |
+
|
165 |
+
def _create_onnx_model(self, onnx_model_path: str, processor_name: str):
|
166 |
+
"""Create ONNX model if it doesn't exist"""
|
167 |
+
try:
|
168 |
+
# Import the converter from model_convert
|
169 |
+
from src.model_convert.wav2vec2onnx import Wav2Vec2ONNXConverter
|
170 |
+
|
171 |
+
print("Creating new ONNX model...")
|
172 |
+
converter = Wav2Vec2ONNXConverter(processor_name)
|
173 |
+
created_path = converter.convert_to_onnx(
|
174 |
+
onnx_path=onnx_model_path,
|
175 |
+
input_length=160000, # 10 seconds
|
176 |
+
opset_version=14,
|
177 |
+
)
|
178 |
+
print(f"✓ ONNX model created successfully at: {created_path}")
|
179 |
+
|
180 |
+
except ImportError as e:
|
181 |
+
print(f"Error importing Wav2Vec2ONNXConverter: {e}")
|
182 |
+
# Fallback: use the convert_to_onnx.py directly if wav2vec2onnx.py doesn't work
|
183 |
+
self._fallback_create_onnx_model(onnx_model_path, processor_name)
|
184 |
+
|
185 |
+
except Exception as e:
|
186 |
+
print(f"Error creating ONNX model: {e}")
|
187 |
+
# Try fallback method
|
188 |
+
self._fallback_create_onnx_model(onnx_model_path, processor_name)
|
189 |
+
|
190 |
+
def _fallback_create_onnx_model(self, onnx_model_path: str, processor_name: str):
|
191 |
+
"""Fallback method to create ONNX model using basic torch.onnx.export"""
|
192 |
+
try:
|
193 |
+
print("Using fallback method to create ONNX model...")
|
194 |
+
|
195 |
+
# Load PyTorch model
|
196 |
+
model = Wav2Vec2ForCTC.from_pretrained(processor_name)
|
197 |
+
model.eval()
|
198 |
+
|
199 |
+
# Create dummy input
|
200 |
+
dummy_input = torch.randn(1, 160000, dtype=torch.float32)
|
201 |
+
|
202 |
+
# Export to ONNX
|
203 |
+
with torch.no_grad():
|
204 |
+
torch.onnx.export(
|
205 |
+
model,
|
206 |
+
dummy_input,
|
207 |
+
onnx_model_path,
|
208 |
+
input_names=["input_values"],
|
209 |
+
output_names=["logits"],
|
210 |
+
dynamic_axes={
|
211 |
+
"input_values": {0: "batch_size", 1: "sequence_length"},
|
212 |
+
"logits": {0: "batch_size", 1: "sequence_length"},
|
213 |
+
},
|
214 |
+
opset_version=14,
|
215 |
+
do_constant_folding=True,
|
216 |
+
verbose=False,
|
217 |
+
export_params=True,
|
218 |
+
)
|
219 |
+
|
220 |
+
print(f"✓ Fallback ONNX model created at: {onnx_model_path}")
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
print(f"Fallback method also failed: {e}")
|
224 |
+
raise Exception(f"Could not create ONNX model: {e}")
|
225 |
+
|
226 |
+
def transcribe_to_characters(self, audio_path: str) -> Dict:
|
227 |
+
"""
|
228 |
+
Transcribe audio directly to characters using ONNX model (no language model correction)
|
229 |
+
Returns raw character sequence as produced by the model
|
230 |
+
"""
|
231 |
+
try:
|
232 |
+
# Load audio
|
233 |
+
speech, sr = librosa.load(audio_path, sr=self.sample_rate)
|
234 |
+
|
235 |
+
# Prepare input for ONNX
|
236 |
+
input_values = self.processor(
|
237 |
+
speech, sampling_rate=self.sample_rate, return_tensors="np"
|
238 |
+
).input_values
|
239 |
+
|
240 |
+
# Run ONNX inference
|
241 |
+
ort_inputs = {self.input_name: input_values}
|
242 |
+
ort_outputs = self.session.run([self.output_name], ort_inputs)
|
243 |
+
logits = ort_outputs[0]
|
244 |
+
|
245 |
+
# Get predictions
|
246 |
+
predicted_ids = np.argmax(logits, axis=-1)
|
247 |
+
|
248 |
+
# Decode to characters directly
|
249 |
+
character_transcript = self.processor.batch_decode(predicted_ids)[0]
|
250 |
+
logger.info(f"character_transcript {character_transcript}")
|
251 |
+
|
252 |
+
# Clean up character transcript
|
253 |
+
character_transcript = self._clean_character_transcript(
|
254 |
+
character_transcript
|
255 |
+
)
|
256 |
+
|
257 |
+
# Convert characters to phoneme-like representation
|
258 |
+
phoneme_like_transcript = self._characters_to_phoneme_representation(
|
259 |
+
character_transcript
|
260 |
+
)
|
261 |
+
|
262 |
+
# Calculate confidence scores
|
263 |
+
confidence_scores = self._calculate_confidence_scores(logits)
|
264 |
+
|
265 |
+
return {
|
266 |
+
"character_transcript": character_transcript,
|
267 |
+
"phoneme_representation": phoneme_like_transcript,
|
268 |
+
"raw_predicted_ids": predicted_ids[0].tolist(),
|
269 |
+
"confidence_scores": confidence_scores[:100], # Limit for JSON
|
270 |
+
}
|
271 |
+
|
272 |
+
except Exception as e:
|
273 |
+
print(f"Transcription error: {e}")
|
274 |
+
return {
|
275 |
+
"character_transcript": "",
|
276 |
+
"phoneme_representation": "",
|
277 |
+
"raw_predicted_ids": [],
|
278 |
+
"confidence_scores": [],
|
279 |
+
}
|
280 |
+
|
281 |
+
def _calculate_confidence_scores(self, logits: np.ndarray) -> List[float]:
|
282 |
+
"""Calculate confidence scores from logits using numpy"""
|
283 |
+
# Apply softmax
|
284 |
+
exp_logits = np.exp(logits - np.max(logits, axis=-1, keepdims=True))
|
285 |
+
softmax_probs = exp_logits / np.sum(exp_logits, axis=-1, keepdims=True)
|
286 |
+
|
287 |
+
# Get max probabilities
|
288 |
+
max_probs = np.max(softmax_probs, axis=-1)[0]
|
289 |
+
return max_probs.tolist()
|
290 |
+
|
291 |
+
def _clean_character_transcript(self, transcript: str) -> str:
|
292 |
+
"""Clean and standardize character transcript"""
|
293 |
+
# Remove extra spaces and special tokens
|
294 |
+
logger.info(f"Raw transcript before cleaning: {transcript}")
|
295 |
+
cleaned = re.sub(r"\s+", " ", transcript)
|
296 |
+
cleaned = cleaned.strip().lower()
|
297 |
+
|
298 |
+
return cleaned
|
299 |
+
|
300 |
+
def _characters_to_phoneme_representation(self, text: str) -> str:
|
301 |
+
"""Convert character-based transcript to phoneme-like representation for comparison"""
|
302 |
+
# This is a simple character-to-phoneme mapping for pronunciation comparison
|
303 |
+
# The idea is to convert the raw character output to something comparable with reference phonemes
|
304 |
+
|
305 |
+
if not text:
|
306 |
+
return ""
|
307 |
+
|
308 |
+
words = text.split()
|
309 |
+
phoneme_words = []
|
310 |
+
|
311 |
+
# Use our G2P to convert transcript words to phonemes
|
312 |
+
g2p = SimpleG2P()
|
313 |
+
|
314 |
+
for word in words:
|
315 |
+
try:
|
316 |
+
word_data = g2p.text_to_phonemes(word)[0]
|
317 |
+
phoneme_words.extend(word_data["phonemes"])
|
318 |
+
except:
|
319 |
+
# Fallback: simple letter-to-sound mapping
|
320 |
+
phoneme_words.extend(self._simple_letter_to_phoneme(word))
|
321 |
+
|
322 |
+
return " ".join(phoneme_words)
|
323 |
+
|
324 |
+
def _simple_letter_to_phoneme(self, word: str) -> List[str]:
|
325 |
+
"""Simple fallback letter-to-phoneme conversion"""
|
326 |
+
letter_to_phoneme = {
|
327 |
+
"a": "æ",
|
328 |
+
"b": "b",
|
329 |
+
"c": "k",
|
330 |
+
"d": "d",
|
331 |
+
"e": "ɛ",
|
332 |
+
"f": "f",
|
333 |
+
"g": "ɡ",
|
334 |
+
"h": "h",
|
335 |
+
"i": "ɪ",
|
336 |
+
"j": "dʒ",
|
337 |
+
"k": "k",
|
338 |
+
"l": "l",
|
339 |
+
"m": "m",
|
340 |
+
"n": "n",
|
341 |
+
"o": "ʌ",
|
342 |
+
"p": "p",
|
343 |
+
"q": "k",
|
344 |
+
"r": "r",
|
345 |
+
"s": "s",
|
346 |
+
"t": "t",
|
347 |
+
"u": "ʌ",
|
348 |
+
"v": "v",
|
349 |
+
"w": "w",
|
350 |
+
"x": "ks",
|
351 |
+
"y": "j",
|
352 |
+
"z": "z",
|
353 |
+
}
|
354 |
+
|
355 |
+
phonemes = []
|
356 |
+
for letter in word.lower():
|
357 |
+
if letter in letter_to_phoneme:
|
358 |
+
phonemes.append(letter_to_phoneme[letter])
|
359 |
+
|
360 |
+
return phonemes
|
361 |
+
|
362 |
+
def get_model_info(self) -> Dict:
|
363 |
+
"""Get information about the loaded ONNX model"""
|
364 |
+
return {
|
365 |
+
"onnx_model_path": self.onnx_path,
|
366 |
+
"processor_name": self.model_name,
|
367 |
+
"input_name": self.input_name,
|
368 |
+
"output_name": self.output_name,
|
369 |
+
"sample_rate": self.sample_rate,
|
370 |
+
"session_providers": self.session.get_providers(),
|
371 |
+
}
|
372 |
+
|
373 |
+
|
374 |
+
class SimpleG2P:
|
375 |
+
"""Simple Grapheme-to-Phoneme converter for reference text"""
|
376 |
+
|
377 |
+
def __init__(self):
|
378 |
+
try:
|
379 |
+
self.cmu_dict = cmudict.dict()
|
380 |
+
except:
|
381 |
+
self.cmu_dict = {}
|
382 |
+
print("Warning: CMU dictionary not available")
|
383 |
+
|
384 |
+
def text_to_phonemes(self, text: str) -> List[Dict]:
|
385 |
+
"""Convert text to phoneme sequence"""
|
386 |
+
words = self._clean_text(text).split()
|
387 |
+
phoneme_sequence = []
|
388 |
+
|
389 |
+
for word in words:
|
390 |
+
word_phonemes = self._get_word_phonemes(word)
|
391 |
+
phoneme_sequence.append(
|
392 |
+
{
|
393 |
+
"word": word,
|
394 |
+
"phonemes": word_phonemes,
|
395 |
+
"ipa": self._get_ipa(word),
|
396 |
+
"phoneme_string": " ".join(word_phonemes),
|
397 |
+
}
|
398 |
+
)
|
399 |
+
|
400 |
+
return phoneme_sequence
|
401 |
+
|
402 |
+
def get_reference_phoneme_string(self, text: str) -> str:
|
403 |
+
"""Get reference phoneme string for comparison"""
|
404 |
+
phoneme_sequence = self.text_to_phonemes(text)
|
405 |
+
all_phonemes = []
|
406 |
+
|
407 |
+
for word_data in phoneme_sequence:
|
408 |
+
all_phonemes.extend(word_data["phonemes"])
|
409 |
+
|
410 |
+
return " ".join(all_phonemes)
|
411 |
+
|
412 |
+
def _clean_text(self, text: str) -> str:
|
413 |
+
"""Clean text for processing"""
|
414 |
+
text = re.sub(r"[^\w\s\']", " ", text)
|
415 |
+
text = re.sub(r"\s+", " ", text)
|
416 |
+
return text.lower().strip()
|
417 |
+
|
418 |
+
def _get_word_phonemes(self, word: str) -> List[str]:
|
419 |
+
"""Get phonemes for a word"""
|
420 |
+
word_lower = word.lower()
|
421 |
+
|
422 |
+
if word_lower in self.cmu_dict:
|
423 |
+
# Remove stress markers and convert to Wav2Vec2 phoneme format
|
424 |
+
phonemes = self.cmu_dict[word_lower][0]
|
425 |
+
clean_phonemes = [re.sub(r"[0-9]", "", p) for p in phonemes]
|
426 |
+
return self._convert_to_wav2vec_format(clean_phonemes)
|
427 |
+
else:
|
428 |
+
return self._estimate_phonemes(word)
|
429 |
+
|
430 |
+
def _convert_to_wav2vec_format(self, cmu_phonemes: List[str]) -> List[str]:
|
431 |
+
"""Convert CMU phonemes to Wav2Vec2 format"""
|
432 |
+
# Mapping from CMU to Wav2Vec2/eSpeak phonemes
|
433 |
+
cmu_to_espeak = {
|
434 |
+
"AA": "ɑ",
|
435 |
+
"AE": "æ",
|
436 |
+
"AH": "ʌ",
|
437 |
+
"AO": "ɔ",
|
438 |
+
"AW": "aʊ",
|
439 |
+
"AY": "aɪ",
|
440 |
+
"EH": "ɛ",
|
441 |
+
"ER": "ɝ",
|
442 |
+
"EY": "eɪ",
|
443 |
+
"IH": "ɪ",
|
444 |
+
"IY": "i",
|
445 |
+
"OW": "oʊ",
|
446 |
+
"OY": "ɔɪ",
|
447 |
+
"UH": "ʊ",
|
448 |
+
"UW": "u",
|
449 |
+
"B": "b",
|
450 |
+
"CH": "tʃ",
|
451 |
+
"D": "d",
|
452 |
+
"DH": "ð",
|
453 |
+
"F": "f",
|
454 |
+
"G": "ɡ",
|
455 |
+
"HH": "h",
|
456 |
+
"JH": "dʒ",
|
457 |
+
"K": "k",
|
458 |
+
"L": "l",
|
459 |
+
"M": "m",
|
460 |
+
"N": "n",
|
461 |
+
"NG": "ŋ",
|
462 |
+
"P": "p",
|
463 |
+
"R": "r",
|
464 |
+
"S": "s",
|
465 |
+
"SH": "ʃ",
|
466 |
+
"T": "t",
|
467 |
+
"TH": "θ",
|
468 |
+
"V": "v",
|
469 |
+
"W": "w",
|
470 |
+
"Y": "j",
|
471 |
+
"Z": "z",
|
472 |
+
"ZH": "ʒ",
|
473 |
+
}
|
474 |
+
|
475 |
+
converted = []
|
476 |
+
for phoneme in cmu_phonemes:
|
477 |
+
converted_phoneme = cmu_to_espeak.get(phoneme, phoneme.lower())
|
478 |
+
converted.append(converted_phoneme)
|
479 |
+
|
480 |
+
return converted
|
481 |
+
|
482 |
+
def _get_ipa(self, word: str) -> str:
|
483 |
+
"""Get IPA transcription"""
|
484 |
+
try:
|
485 |
+
return ipa.convert(word)
|
486 |
+
except:
|
487 |
+
return f"/{word}/"
|
488 |
+
|
489 |
+
def _estimate_phonemes(self, word: str) -> List[str]:
|
490 |
+
"""Estimate phonemes for unknown words"""
|
491 |
+
# Basic phoneme estimation with eSpeak-style output
|
492 |
+
phoneme_map = {
|
493 |
+
"ch": ["tʃ"],
|
494 |
+
"sh": ["ʃ"],
|
495 |
+
"th": ["θ"],
|
496 |
+
"ph": ["f"],
|
497 |
+
"ck": ["k"],
|
498 |
+
"ng": ["ŋ"],
|
499 |
+
"qu": ["k", "w"],
|
500 |
+
"a": ["æ"],
|
501 |
+
"e": ["ɛ"],
|
502 |
+
"i": ["ɪ"],
|
503 |
+
"o": ["ʌ"],
|
504 |
+
"u": ["ʌ"],
|
505 |
+
"b": ["b"],
|
506 |
+
"c": ["k"],
|
507 |
+
"d": ["d"],
|
508 |
+
"f": ["f"],
|
509 |
+
"g": ["ɡ"],
|
510 |
+
"h": ["h"],
|
511 |
+
"j": ["dʒ"],
|
512 |
+
"k": ["k"],
|
513 |
+
"l": ["l"],
|
514 |
+
"m": ["m"],
|
515 |
+
"n": ["n"],
|
516 |
+
"p": ["p"],
|
517 |
+
"r": ["r"],
|
518 |
+
"s": ["s"],
|
519 |
+
"t": ["t"],
|
520 |
+
"v": ["v"],
|
521 |
+
"w": ["w"],
|
522 |
+
"x": ["k", "s"],
|
523 |
+
"y": ["j"],
|
524 |
+
"z": ["z"],
|
525 |
+
}
|
526 |
+
|
527 |
+
word = word.lower()
|
528 |
+
phonemes = []
|
529 |
+
i = 0
|
530 |
+
|
531 |
+
while i < len(word):
|
532 |
+
# Check 2-letter combinations first
|
533 |
+
if i <= len(word) - 2:
|
534 |
+
two_char = word[i : i + 2]
|
535 |
+
if two_char in phoneme_map:
|
536 |
+
phonemes.extend(phoneme_map[two_char])
|
537 |
+
i += 2
|
538 |
+
continue
|
539 |
+
|
540 |
+
# Single character
|
541 |
+
char = word[i]
|
542 |
+
if char in phoneme_map:
|
543 |
+
phonemes.extend(phoneme_map[char])
|
544 |
+
|
545 |
+
i += 1
|
546 |
+
|
547 |
+
return phonemes
|
548 |
+
|
549 |
+
|
550 |
+
class PhonemeComparator:
|
551 |
+
"""Compare reference and learner phoneme sequences"""
|
552 |
+
|
553 |
+
def __init__(self):
|
554 |
+
# Vietnamese speakers' common phoneme substitutions
|
555 |
+
self.substitution_patterns = {
|
556 |
+
"θ": ["f", "s", "t"], # TH → F, S, T
|
557 |
+
"ð": ["d", "z", "v"], # DH → D, Z, V
|
558 |
+
"v": ["w", "f"], # V → W, F
|
559 |
+
"r": ["l"], # R → L
|
560 |
+
"l": ["r"], # L → R
|
561 |
+
"z": ["s"], # Z → S
|
562 |
+
"ʒ": ["ʃ", "z"], # ZH → SH, Z
|
563 |
+
"ŋ": ["n"], # NG → N
|
564 |
+
}
|
565 |
+
|
566 |
+
# Difficulty levels for Vietnamese speakers
|
567 |
+
self.difficulty_map = {
|
568 |
+
"θ": 0.9, # th (think)
|
569 |
+
"ð": 0.9, # th (this)
|
570 |
+
"v": 0.8, # v
|
571 |
+
"z": 0.8, # z
|
572 |
+
"ʒ": 0.9, # zh (measure)
|
573 |
+
"r": 0.7, # r
|
574 |
+
"l": 0.6, # l
|
575 |
+
"w": 0.5, # w
|
576 |
+
"f": 0.4, # f
|
577 |
+
"s": 0.3, # s
|
578 |
+
"ʃ": 0.5, # sh
|
579 |
+
"tʃ": 0.4, # ch
|
580 |
+
"dʒ": 0.5, # j
|
581 |
+
"ŋ": 0.3, # ng
|
582 |
+
}
|
583 |
+
|
584 |
+
def compare_phoneme_sequences(
|
585 |
+
self, reference_phonemes: str, learner_phonemes: str
|
586 |
+
) -> List[Dict]:
|
587 |
+
"""Compare reference and learner phoneme sequences"""
|
588 |
+
|
589 |
+
# Split phoneme strings
|
590 |
+
ref_phones = reference_phonemes.split()
|
591 |
+
learner_phones = learner_phonemes.split()
|
592 |
+
|
593 |
+
print(f"Reference phonemes: {ref_phones}")
|
594 |
+
print(f"Learner phonemes: {learner_phones}")
|
595 |
+
|
596 |
+
# Simple alignment comparison
|
597 |
+
comparisons = []
|
598 |
+
max_len = max(len(ref_phones), len(learner_phones))
|
599 |
+
|
600 |
+
for i in range(max_len):
|
601 |
+
ref_phoneme = ref_phones[i] if i < len(ref_phones) else ""
|
602 |
+
learner_phoneme = learner_phones[i] if i < len(learner_phones) else ""
|
603 |
+
|
604 |
+
if ref_phoneme and learner_phoneme:
|
605 |
+
# Both present - check accuracy
|
606 |
+
if ref_phoneme == learner_phoneme:
|
607 |
+
status = "correct"
|
608 |
+
score = 1.0
|
609 |
+
elif self._is_acceptable_substitution(ref_phoneme, learner_phoneme):
|
610 |
+
status = "acceptable"
|
611 |
+
score = 0.7
|
612 |
+
else:
|
613 |
+
status = "wrong"
|
614 |
+
score = 0.2
|
615 |
+
|
616 |
+
elif ref_phoneme and not learner_phoneme:
|
617 |
+
# Missing phoneme
|
618 |
+
status = "missing"
|
619 |
+
score = 0.0
|
620 |
+
|
621 |
+
elif learner_phoneme and not ref_phoneme:
|
622 |
+
# Extra phoneme
|
623 |
+
status = "extra"
|
624 |
+
score = 0.0
|
625 |
+
else:
|
626 |
+
continue
|
627 |
+
|
628 |
+
comparison = {
|
629 |
+
"position": i,
|
630 |
+
"reference_phoneme": ref_phoneme,
|
631 |
+
"learner_phoneme": learner_phoneme,
|
632 |
+
"status": status,
|
633 |
+
"score": score,
|
634 |
+
"difficulty": self.difficulty_map.get(ref_phoneme, 0.3),
|
635 |
+
}
|
636 |
+
|
637 |
+
comparisons.append(comparison)
|
638 |
+
|
639 |
+
return comparisons
|
640 |
+
|
641 |
+
def _is_acceptable_substitution(self, reference: str, learner: str) -> bool:
|
642 |
+
"""Check if learner phoneme is acceptable substitution for Vietnamese speakers"""
|
643 |
+
acceptable = self.substitution_patterns.get(reference, [])
|
644 |
+
return learner in acceptable
|
645 |
+
|
646 |
+
|
647 |
+
# =============================================================================
|
648 |
+
# WORD ANALYZER
|
649 |
+
# =============================================================================
|
650 |
+
|
651 |
+
|
652 |
+
class WordAnalyzer:
|
653 |
+
"""Analyze word-level pronunciation accuracy using character-based ASR"""
|
654 |
+
|
655 |
+
def __init__(self):
|
656 |
+
self.g2p = SimpleG2P()
|
657 |
+
self.comparator = PhonemeComparator()
|
658 |
+
|
659 |
+
def analyze_words(self, reference_text: str, learner_phonemes: str) -> Dict:
|
660 |
+
"""Analyze word-level pronunciation using phoneme representation from character ASR"""
|
661 |
+
|
662 |
+
# Get reference phonemes by word
|
663 |
+
reference_words = self.g2p.text_to_phonemes(reference_text)
|
664 |
+
|
665 |
+
# Get overall phoneme comparison
|
666 |
+
reference_phoneme_string = self.g2p.get_reference_phoneme_string(reference_text)
|
667 |
+
phoneme_comparisons = self.comparator.compare_phoneme_sequences(
|
668 |
+
reference_phoneme_string, learner_phonemes
|
669 |
+
)
|
670 |
+
|
671 |
+
# Map phonemes back to words
|
672 |
+
word_highlights = self._create_word_highlights(
|
673 |
+
reference_words, phoneme_comparisons
|
674 |
+
)
|
675 |
+
|
676 |
+
# Identify wrong words
|
677 |
+
wrong_words = self._identify_wrong_words(word_highlights, phoneme_comparisons)
|
678 |
+
|
679 |
+
return {
|
680 |
+
"word_highlights": word_highlights,
|
681 |
+
"phoneme_differences": phoneme_comparisons,
|
682 |
+
"wrong_words": wrong_words,
|
683 |
+
}
|
684 |
+
|
685 |
+
def _create_word_highlights(
|
686 |
+
self, reference_words: List[Dict], phoneme_comparisons: List[Dict]
|
687 |
+
) -> List[Dict]:
|
688 |
+
"""Create word highlighting data"""
|
689 |
+
|
690 |
+
word_highlights = []
|
691 |
+
phoneme_index = 0
|
692 |
+
|
693 |
+
for word_data in reference_words:
|
694 |
+
word = word_data["word"]
|
695 |
+
word_phonemes = word_data["phonemes"]
|
696 |
+
num_phonemes = len(word_phonemes)
|
697 |
+
|
698 |
+
# Get phoneme scores for this word
|
699 |
+
word_phoneme_scores = []
|
700 |
+
for j in range(num_phonemes):
|
701 |
+
if phoneme_index + j < len(phoneme_comparisons):
|
702 |
+
comparison = phoneme_comparisons[phoneme_index + j]
|
703 |
+
word_phoneme_scores.append(comparison["score"])
|
704 |
+
|
705 |
+
# Calculate word score
|
706 |
+
word_score = np.mean(word_phoneme_scores) if word_phoneme_scores else 0.0
|
707 |
+
|
708 |
+
# Create word highlight
|
709 |
+
highlight = {
|
710 |
+
"word": word,
|
711 |
+
"score": float(word_score),
|
712 |
+
"status": self._get_word_status(word_score),
|
713 |
+
"color": self._get_word_color(word_score),
|
714 |
+
"phonemes": word_phonemes,
|
715 |
+
"ipa": word_data["ipa"],
|
716 |
+
"phoneme_scores": word_phoneme_scores,
|
717 |
+
"phoneme_start_index": phoneme_index,
|
718 |
+
"phoneme_end_index": phoneme_index + num_phonemes - 1,
|
719 |
+
}
|
720 |
+
|
721 |
+
word_highlights.append(highlight)
|
722 |
+
phoneme_index += num_phonemes
|
723 |
+
|
724 |
+
return word_highlights
|
725 |
+
|
726 |
+
def _identify_wrong_words(
|
727 |
+
self, word_highlights: List[Dict], phoneme_comparisons: List[Dict]
|
728 |
+
) -> List[Dict]:
|
729 |
+
"""Identify words that were pronounced incorrectly"""
|
730 |
+
|
731 |
+
wrong_words = []
|
732 |
+
|
733 |
+
for word_highlight in word_highlights:
|
734 |
+
if word_highlight["score"] < 0.6: # Threshold for wrong pronunciation
|
735 |
+
|
736 |
+
# Find specific phoneme errors for this word
|
737 |
+
start_idx = word_highlight["phoneme_start_index"]
|
738 |
+
end_idx = word_highlight["phoneme_end_index"]
|
739 |
+
|
740 |
+
wrong_phonemes = []
|
741 |
+
missing_phonemes = []
|
742 |
+
|
743 |
+
for i in range(start_idx, min(end_idx + 1, len(phoneme_comparisons))):
|
744 |
+
comparison = phoneme_comparisons[i]
|
745 |
+
|
746 |
+
if comparison["status"] == "wrong":
|
747 |
+
wrong_phonemes.append(
|
748 |
+
{
|
749 |
+
"expected": comparison["reference_phoneme"],
|
750 |
+
"actual": comparison["learner_phoneme"],
|
751 |
+
"difficulty": comparison["difficulty"],
|
752 |
+
}
|
753 |
+
)
|
754 |
+
elif comparison["status"] == "missing":
|
755 |
+
missing_phonemes.append(
|
756 |
+
{
|
757 |
+
"phoneme": comparison["reference_phoneme"],
|
758 |
+
"difficulty": comparison["difficulty"],
|
759 |
+
}
|
760 |
+
)
|
761 |
+
|
762 |
+
wrong_word = {
|
763 |
+
"word": word_highlight["word"],
|
764 |
+
"score": word_highlight["score"],
|
765 |
+
"expected_phonemes": word_highlight["phonemes"],
|
766 |
+
"ipa": word_highlight["ipa"],
|
767 |
+
"wrong_phonemes": wrong_phonemes,
|
768 |
+
"missing_phonemes": missing_phonemes,
|
769 |
+
"tips": self._get_vietnamese_tips(wrong_phonemes, missing_phonemes),
|
770 |
+
}
|
771 |
+
|
772 |
+
wrong_words.append(wrong_word)
|
773 |
+
|
774 |
+
return wrong_words
|
775 |
+
|
776 |
+
def _get_word_status(self, score: float) -> str:
|
777 |
+
"""Get word status from score"""
|
778 |
+
if score >= 0.8:
|
779 |
+
return "excellent"
|
780 |
+
elif score >= 0.6:
|
781 |
+
return "good"
|
782 |
+
elif score >= 0.4:
|
783 |
+
return "needs_practice"
|
784 |
+
else:
|
785 |
+
return "poor"
|
786 |
+
|
787 |
+
def _get_word_color(self, score: float) -> str:
|
788 |
+
"""Get color for word highlighting"""
|
789 |
+
if score >= 0.8:
|
790 |
+
return "#22c55e" # Green
|
791 |
+
elif score >= 0.6:
|
792 |
+
return "#84cc16" # Light green
|
793 |
+
elif score >= 0.4:
|
794 |
+
return "#eab308" # Yellow
|
795 |
+
else:
|
796 |
+
return "#ef4444" # Red
|
797 |
+
|
798 |
+
def _get_vietnamese_tips(
|
799 |
+
self, wrong_phonemes: List[Dict], missing_phonemes: List[Dict]
|
800 |
+
) -> List[str]:
|
801 |
+
"""Get Vietnamese-specific pronunciation tips"""
|
802 |
+
|
803 |
+
tips = []
|
804 |
+
|
805 |
+
# Tips for specific Vietnamese pronunciation challenges
|
806 |
+
vietnamese_tips = {
|
807 |
+
"θ": "Đặt lưỡi giữa răng trên và dưới, thổi nhẹ (think, three)",
|
808 |
+
"ð": "Giống θ nhưng rung dây thanh âm (this, that)",
|
809 |
+
"v": "Chạm môi dưới vào răng trên, không dùng cả hai môi như tiếng Việt",
|
810 |
+
"r": "Cuộn lưỡi nhưng không chạm vào vòm miệng, không lăn lưỡi",
|
811 |
+
"l": "Đầu lưỡi chạm vào vòm miệng sau răng",
|
812 |
+
"z": "Giống âm 's' nhưng có rung dây thanh âm",
|
813 |
+
"ʒ": "Giống âm 'ʃ' (sh) nhưng có rung dây thanh âm",
|
814 |
+
"w": "Tròn môi như âm 'u', không dùng răng như âm 'v'",
|
815 |
+
}
|
816 |
+
|
817 |
+
# Add tips for wrong phonemes
|
818 |
+
for wrong in wrong_phonemes:
|
819 |
+
expected = wrong["expected"]
|
820 |
+
actual = wrong["actual"]
|
821 |
+
|
822 |
+
if expected in vietnamese_tips:
|
823 |
+
tips.append(f"Âm '{expected}': {vietnamese_tips[expected]}")
|
824 |
+
else:
|
825 |
+
tips.append(f"Luyện âm '{expected}' thay vì '{actual}'")
|
826 |
+
|
827 |
+
# Add tips for missing phonemes
|
828 |
+
for missing in missing_phonemes:
|
829 |
+
phoneme = missing["phoneme"]
|
830 |
+
if phoneme in vietnamese_tips:
|
831 |
+
tips.append(f"Thiếu âm '{phoneme}': {vietnamese_tips[phoneme]}")
|
832 |
+
|
833 |
+
return tips
|
834 |
+
|
835 |
+
|
836 |
+
class SimpleFeedbackGenerator:
|
837 |
+
"""Generate simple, actionable feedback in Vietnamese"""
|
838 |
+
|
839 |
+
def generate_feedback(
|
840 |
+
self,
|
841 |
+
overall_score: float,
|
842 |
+
wrong_words: List[Dict],
|
843 |
+
phoneme_comparisons: List[Dict],
|
844 |
+
) -> List[str]:
|
845 |
+
"""Generate Vietnamese feedback"""
|
846 |
+
|
847 |
+
feedback = []
|
848 |
+
|
849 |
+
# Overall feedback in Vietnamese
|
850 |
+
if overall_score >= 0.8:
|
851 |
+
feedback.append("Phát âm rất tốt! Bạn đã làm xuất sắc.")
|
852 |
+
elif overall_score >= 0.6:
|
853 |
+
feedback.append("Phát âm khá tốt, còn một vài điểm cần cải thiện.")
|
854 |
+
elif overall_score >= 0.4:
|
855 |
+
feedback.append(
|
856 |
+
"Cần luyện tập thêm. Tập trung vào những từ được đánh dấu đỏ."
|
857 |
+
)
|
858 |
+
else:
|
859 |
+
feedback.append("Hãy luyện tập chậm và rõ ràng hơn.")
|
860 |
+
|
861 |
+
# Wrong words feedback
|
862 |
+
if wrong_words:
|
863 |
+
if len(wrong_words) <= 3:
|
864 |
+
word_names = [w["word"] for w in wrong_words]
|
865 |
+
feedback.append(f"Các từ cần luyện tập: {', '.join(word_names)}")
|
866 |
+
else:
|
867 |
+
feedback.append(
|
868 |
+
f"Có {len(wrong_words)} từ cần luyện tập. Tập trung vào từng từ một."
|
869 |
+
)
|
870 |
+
|
871 |
+
# Most problematic phonemes
|
872 |
+
problem_phonemes = defaultdict(int)
|
873 |
+
for comparison in phoneme_comparisons:
|
874 |
+
if comparison["status"] in ["wrong", "missing"]:
|
875 |
+
phoneme = comparison["reference_phoneme"]
|
876 |
+
problem_phonemes[phoneme] += 1
|
877 |
+
|
878 |
+
if problem_phonemes:
|
879 |
+
most_difficult = sorted(
|
880 |
+
problem_phonemes.items(), key=lambda x: x[1], reverse=True
|
881 |
+
)
|
882 |
+
top_problem = most_difficult[0][0]
|
883 |
+
|
884 |
+
phoneme_tips = {
|
885 |
+
"θ": "Lưỡi giữa răng, thổi nhẹ",
|
886 |
+
"ð": "Lưỡi giữa răng, rung dây thanh",
|
887 |
+
"v": "Môi dưới chạm răng trên",
|
888 |
+
"r": "Cuộn lưỡi, không chạm vòm miệng",
|
889 |
+
"l": "Lưỡi chạm vòm miệng",
|
890 |
+
"z": "Như 's' nhưng rung dây thanh",
|
891 |
+
}
|
892 |
+
|
893 |
+
if top_problem in phoneme_tips:
|
894 |
+
feedback.append(
|
895 |
+
f"Âm khó nhất '{top_problem}': {phoneme_tips[top_problem]}"
|
896 |
+
)
|
897 |
+
|
898 |
+
return feedback
|
899 |
+
|
900 |
+
|
901 |
+
class SimplePronunciationAssessor:
|
902 |
+
"""Main pronunciation assessor supporting both normal (Whisper) and advanced (Wav2Vec2) modes"""
|
903 |
+
|
904 |
+
def __init__(self):
|
905 |
+
print("Initializing Simple Pronunciation Assessor...")
|
906 |
+
self.wav2vec2_asr = Wav2Vec2CharacterASRONNX() # Advanced mode
|
907 |
+
self.whisper_asr = WhisperASR() # Normal mode
|
908 |
+
self.word_analyzer = WordAnalyzer()
|
909 |
+
self.feedback_generator = SimpleFeedbackGenerator()
|
910 |
+
print("Initialization completed")
|
911 |
+
|
912 |
+
def assess_pronunciation(
|
913 |
+
self, audio_path: str, reference_text: str, mode: str = "normal"
|
914 |
+
) -> Dict:
|
915 |
+
"""
|
916 |
+
Main assessment function with mode selection
|
917 |
+
|
918 |
+
Args:
|
919 |
+
audio_path: Path to audio file
|
920 |
+
reference_text: Reference text to compare
|
921 |
+
mode: 'normal' (Whisper) or 'advanced' (Wav2Vec2)
|
922 |
+
|
923 |
+
Output: Word highlights + Phoneme differences + Wrong words
|
924 |
+
"""
|
925 |
+
|
926 |
+
print(f"Starting pronunciation assessment in {mode} mode...")
|
927 |
+
|
928 |
+
# Step 1: Choose ASR model based on mode
|
929 |
+
if mode == "advanced":
|
930 |
+
print("Step 1: Using Wav2Vec2 character transcription...")
|
931 |
+
asr_result = self.wav2vec2_asr.transcribe_to_characters(audio_path)
|
932 |
+
model_info = f"Wav2Vec2-Character ({self.wav2vec2_asr.model_name})"
|
933 |
+
else: # normal mode
|
934 |
+
print("Step 1: Using Whisper transcription...")
|
935 |
+
asr_result = self.whisper_asr.transcribe_to_text(audio_path)
|
936 |
+
model_info = f"Whisper ({self.whisper_asr.model_name})"
|
937 |
+
|
938 |
+
character_transcript = asr_result["character_transcript"]
|
939 |
+
phoneme_representation = asr_result["phoneme_representation"]
|
940 |
+
|
941 |
+
print(f"Character transcript: {character_transcript}")
|
942 |
+
print(f"Phoneme representation: {phoneme_representation}")
|
943 |
+
|
944 |
+
# Step 2: Word analysis using phoneme representation
|
945 |
+
print("Step 2: Analyzing words...")
|
946 |
+
analysis_result = self.word_analyzer.analyze_words(
|
947 |
+
reference_text, phoneme_representation
|
948 |
+
)
|
949 |
+
|
950 |
+
# Step 3: Calculate overall score
|
951 |
+
phoneme_comparisons = analysis_result["phoneme_differences"]
|
952 |
+
overall_score = self._calculate_overall_score(phoneme_comparisons)
|
953 |
+
|
954 |
+
# Step 4: Generate feedback
|
955 |
+
print("Step 3: Generating feedback...")
|
956 |
+
feedback = self.feedback_generator.generate_feedback(
|
957 |
+
overall_score, analysis_result["wrong_words"], phoneme_comparisons
|
958 |
+
)
|
959 |
+
|
960 |
+
result = {
|
961 |
+
"transcript": character_transcript, # What user actually said
|
962 |
+
"transcript_phonemes": phoneme_representation,
|
963 |
+
"user_phonemes": phoneme_representation, # Alias for UI clarity
|
964 |
+
"character_transcript": character_transcript,
|
965 |
+
"overall_score": overall_score,
|
966 |
+
"word_highlights": analysis_result["word_highlights"],
|
967 |
+
"phoneme_differences": phoneme_comparisons,
|
968 |
+
"wrong_words": analysis_result["wrong_words"],
|
969 |
+
"feedback": feedback,
|
970 |
+
"processing_info": {
|
971 |
+
"model_used": model_info,
|
972 |
+
"mode": mode,
|
973 |
+
"character_based": mode == "advanced",
|
974 |
+
"language_model_correction": mode == "normal",
|
975 |
+
"raw_output": mode == "advanced",
|
976 |
+
},
|
977 |
+
}
|
978 |
+
|
979 |
+
print("Assessment completed successfully")
|
980 |
+
return result
|
981 |
+
|
982 |
+
def _calculate_overall_score(self, phoneme_comparisons: List[Dict]) -> float:
|
983 |
+
"""Calculate overall pronunciation score"""
|
984 |
+
if not phoneme_comparisons:
|
985 |
+
return 0.0
|
986 |
+
|
987 |
+
total_score = sum(comparison["score"] for comparison in phoneme_comparisons)
|
988 |
+
return total_score / len(phoneme_comparisons)
|
989 |
+
|
990 |
+
|
991 |
+
def convert_numpy_types(obj):
|
992 |
+
"""Convert numpy types to Python native types"""
|
993 |
+
if isinstance(obj, np.integer):
|
994 |
+
return int(obj)
|
995 |
+
elif isinstance(obj, np.floating):
|
996 |
+
return float(obj)
|
997 |
+
elif isinstance(obj, np.ndarray):
|
998 |
+
return obj.tolist()
|
999 |
+
elif isinstance(obj, dict):
|
1000 |
+
return {key: convert_numpy_types(value) for key, value in obj.items()}
|
1001 |
+
elif isinstance(obj, list):
|
1002 |
+
return [convert_numpy_types(item) for item in obj]
|
1003 |
+
else:
|
1004 |
+
return obj
|
src/apis/routes/speaking_route.py
CHANGED
@@ -1,38 +1,23 @@
|
|
1 |
-
|
2 |
-
# Input: Audio + Reference Text → Output: Word highlights + Phoneme diff + Wrong words
|
3 |
-
# Uses Wav2Vec2Phoneme for accurate phoneme-level transcription without language model correction
|
4 |
-
|
5 |
-
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, APIRouter
|
6 |
-
from fastapi.middleware.cors import CORSMiddleware
|
7 |
from pydantic import BaseModel
|
8 |
-
from typing import List, Dict
|
9 |
import tempfile
|
10 |
-
import os
|
11 |
import numpy as np
|
12 |
-
import librosa
|
13 |
-
import nltk
|
14 |
-
import eng_to_ipa as ipa
|
15 |
-
import torch
|
16 |
import re
|
17 |
-
from collections import defaultdict
|
18 |
import warnings
|
19 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
warnings.filterwarnings("ignore")
|
22 |
|
23 |
-
# Download required NLTK data
|
24 |
-
try:
|
25 |
-
nltk.download("cmudict", quiet=True)
|
26 |
-
from nltk.corpus import cmudict
|
27 |
-
except:
|
28 |
-
print("Warning: NLTK data not available")
|
29 |
-
|
30 |
-
# =============================================================================
|
31 |
-
# MODELS
|
32 |
-
# =============================================================================
|
33 |
-
|
34 |
router = APIRouter(prefix="/pronunciation", tags=["Pronunciation"])
|
35 |
|
|
|
36 |
class PronunciationAssessmentResult(BaseModel):
|
37 |
transcript: str # What the user actually said (character transcript)
|
38 |
transcript_phonemes: str # User's phonemes
|
@@ -45,843 +30,145 @@ class PronunciationAssessmentResult(BaseModel):
|
|
45 |
feedback: List[str]
|
46 |
processing_info: Dict
|
47 |
|
48 |
-
# =============================================================================
|
49 |
-
# WAV2VEC2 PHONEME ASR
|
50 |
-
# =============================================================================
|
51 |
-
|
52 |
-
class Wav2Vec2CharacterASR:
|
53 |
-
"""Wav2Vec2 character-level ASR without language model correction"""
|
54 |
-
|
55 |
-
def __init__(self, model_name: str = "facebook/wav2vec2-base-960h"):
|
56 |
-
"""
|
57 |
-
Initialize Wav2Vec2 character-level model
|
58 |
-
Available models:
|
59 |
-
- facebook/wav2vec2-large-960h-lv60-self (character-level, no LM)
|
60 |
-
- facebook/wav2vec2-base-960h (character-level, no LM)
|
61 |
-
- facebook/wav2vec2-large-960h (character-level, no LM)
|
62 |
-
"""
|
63 |
-
print(f"Loading Wav2Vec2 character model: {model_name}")
|
64 |
-
|
65 |
-
try:
|
66 |
-
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
67 |
-
self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
68 |
-
self.model.eval()
|
69 |
-
print("Wav2Vec2 character model loaded successfully")
|
70 |
-
self.model_name = model_name
|
71 |
-
except Exception as e:
|
72 |
-
print(f"Error loading model {model_name}: {e}")
|
73 |
-
# Fallback to base model
|
74 |
-
fallback_model = "facebook/wav2vec2-base-960h"
|
75 |
-
print(f"Trying fallback model: {fallback_model}")
|
76 |
-
try:
|
77 |
-
self.processor = Wav2Vec2Processor.from_pretrained(fallback_model)
|
78 |
-
self.model = Wav2Vec2ForCTC.from_pretrained(fallback_model)
|
79 |
-
self.model.eval()
|
80 |
-
self.model_name = fallback_model
|
81 |
-
print("Fallback model loaded successfully")
|
82 |
-
except Exception as e2:
|
83 |
-
raise Exception(f"Failed to load both models. Original error: {e}, Fallback error: {e2}")
|
84 |
-
|
85 |
-
self.sample_rate = 16000
|
86 |
-
|
87 |
-
def transcribe_to_characters(self, audio_path: str) -> Dict:
|
88 |
-
"""
|
89 |
-
Transcribe audio directly to characters (no language model correction)
|
90 |
-
Returns raw character sequence as produced by the model
|
91 |
-
"""
|
92 |
-
try:
|
93 |
-
# Load audio
|
94 |
-
speech, sr = librosa.load(audio_path, sr=self.sample_rate)
|
95 |
-
|
96 |
-
# Prepare input
|
97 |
-
input_values = self.processor(
|
98 |
-
speech,
|
99 |
-
sampling_rate=self.sample_rate,
|
100 |
-
return_tensors="pt"
|
101 |
-
).input_values
|
102 |
-
|
103 |
-
# Get model predictions (no language model involved)
|
104 |
-
with torch.no_grad():
|
105 |
-
logits = self.model(input_values).logits
|
106 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
107 |
-
|
108 |
-
# Decode to characters directly
|
109 |
-
character_transcript = self.processor.batch_decode(predicted_ids)[0]
|
110 |
-
|
111 |
-
# Clean up character transcript
|
112 |
-
character_transcript = self._clean_character_transcript(character_transcript)
|
113 |
-
|
114 |
-
# Convert characters to phoneme-like representation
|
115 |
-
phoneme_like_transcript = self._characters_to_phoneme_representation(character_transcript)
|
116 |
-
|
117 |
-
return {
|
118 |
-
"character_transcript": character_transcript,
|
119 |
-
"phoneme_representation": phoneme_like_transcript,
|
120 |
-
"raw_predicted_ids": predicted_ids[0].tolist(),
|
121 |
-
"confidence_scores": torch.softmax(logits, dim=-1).max(dim=-1)[0][0].tolist()[:100] # Limit for JSON
|
122 |
-
}
|
123 |
-
|
124 |
-
except Exception as e:
|
125 |
-
print(f"Transcription error: {e}")
|
126 |
-
return {
|
127 |
-
"character_transcript": "",
|
128 |
-
"phoneme_representation": "",
|
129 |
-
"raw_predicted_ids": [],
|
130 |
-
"confidence_scores": []
|
131 |
-
}
|
132 |
-
|
133 |
-
def _clean_character_transcript(self, transcript: str) -> str:
|
134 |
-
"""Clean and standardize character transcript"""
|
135 |
-
# Remove extra spaces and special tokens
|
136 |
-
cleaned = re.sub(r'\s+', ' ', transcript)
|
137 |
-
cleaned = cleaned.strip().lower()
|
138 |
-
|
139 |
-
return cleaned
|
140 |
-
|
141 |
-
def _characters_to_phoneme_representation(self, text: str) -> str:
|
142 |
-
"""Convert character-based transcript to phoneme-like representation for comparison"""
|
143 |
-
# This is a simple character-to-phoneme mapping for pronunciation comparison
|
144 |
-
# The idea is to convert the raw character output to something comparable with reference phonemes
|
145 |
-
|
146 |
-
if not text:
|
147 |
-
return ""
|
148 |
-
|
149 |
-
words = text.split()
|
150 |
-
phoneme_words = []
|
151 |
-
|
152 |
-
# Use our G2P to convert transcript words to phonemes
|
153 |
-
g2p = SimpleG2P()
|
154 |
-
|
155 |
-
for word in words:
|
156 |
-
try:
|
157 |
-
word_data = g2p.text_to_phonemes(word)[0]
|
158 |
-
phoneme_words.extend(word_data["phonemes"])
|
159 |
-
except:
|
160 |
-
# Fallback: simple letter-to-sound mapping
|
161 |
-
phoneme_words.extend(self._simple_letter_to_phoneme(word))
|
162 |
-
|
163 |
-
return " ".join(phoneme_words)
|
164 |
-
|
165 |
-
def _simple_letter_to_phoneme(self, word: str) -> List[str]:
|
166 |
-
"""Simple fallback letter-to-phoneme conversion"""
|
167 |
-
letter_to_phoneme = {
|
168 |
-
'a': 'æ', 'b': 'b', 'c': 'k', 'd': 'd', 'e': 'ɛ',
|
169 |
-
'f': 'f', 'g': 'ɡ', 'h': 'h', 'i': 'ɪ', 'j': 'dʒ',
|
170 |
-
'k': 'k', 'l': 'l', 'm': 'm', 'n': 'n', 'o': 'ʌ',
|
171 |
-
'p': 'p', 'q': 'k', 'r': 'r', 's': 's', 't': 't',
|
172 |
-
'u': 'ʌ', 'v': 'v', 'w': 'w', 'x': 'ks', 'y': 'j', 'z': 'z'
|
173 |
-
}
|
174 |
-
|
175 |
-
phonemes = []
|
176 |
-
for letter in word.lower():
|
177 |
-
if letter in letter_to_phoneme:
|
178 |
-
phonemes.append(letter_to_phoneme[letter])
|
179 |
-
|
180 |
-
return phonemes
|
181 |
-
|
182 |
-
# =============================================================================
|
183 |
-
# SIMPLE G2P FOR REFERENCE
|
184 |
-
# =============================================================================
|
185 |
-
|
186 |
-
class SimpleG2P:
|
187 |
-
"""Simple Grapheme-to-Phoneme converter for reference text"""
|
188 |
-
|
189 |
-
def __init__(self):
|
190 |
-
try:
|
191 |
-
self.cmu_dict = cmudict.dict()
|
192 |
-
except:
|
193 |
-
self.cmu_dict = {}
|
194 |
-
print("Warning: CMU dictionary not available")
|
195 |
-
|
196 |
-
def text_to_phonemes(self, text: str) -> List[Dict]:
|
197 |
-
"""Convert text to phoneme sequence"""
|
198 |
-
words = self._clean_text(text).split()
|
199 |
-
phoneme_sequence = []
|
200 |
-
|
201 |
-
for word in words:
|
202 |
-
word_phonemes = self._get_word_phonemes(word)
|
203 |
-
phoneme_sequence.append({
|
204 |
-
"word": word,
|
205 |
-
"phonemes": word_phonemes,
|
206 |
-
"ipa": self._get_ipa(word),
|
207 |
-
"phoneme_string": " ".join(word_phonemes)
|
208 |
-
})
|
209 |
-
|
210 |
-
return phoneme_sequence
|
211 |
-
|
212 |
-
def get_reference_phoneme_string(self, text: str) -> str:
|
213 |
-
"""Get reference phoneme string for comparison"""
|
214 |
-
phoneme_sequence = self.text_to_phonemes(text)
|
215 |
-
all_phonemes = []
|
216 |
-
|
217 |
-
for word_data in phoneme_sequence:
|
218 |
-
all_phonemes.extend(word_data["phonemes"])
|
219 |
-
|
220 |
-
return " ".join(all_phonemes)
|
221 |
-
|
222 |
-
def _clean_text(self, text: str) -> str:
|
223 |
-
"""Clean text for processing"""
|
224 |
-
text = re.sub(r"[^\w\s\']", " ", text)
|
225 |
-
text = re.sub(r"\s+", " ", text)
|
226 |
-
return text.lower().strip()
|
227 |
-
|
228 |
-
def _get_word_phonemes(self, word: str) -> List[str]:
|
229 |
-
"""Get phonemes for a word"""
|
230 |
-
word_lower = word.lower()
|
231 |
-
|
232 |
-
if word_lower in self.cmu_dict:
|
233 |
-
# Remove stress markers and convert to Wav2Vec2 phoneme format
|
234 |
-
phonemes = self.cmu_dict[word_lower][0]
|
235 |
-
clean_phonemes = [re.sub(r"[0-9]", "", p) for p in phonemes]
|
236 |
-
return self._convert_to_wav2vec_format(clean_phonemes)
|
237 |
-
else:
|
238 |
-
return self._estimate_phonemes(word)
|
239 |
-
|
240 |
-
def _convert_to_wav2vec_format(self, cmu_phonemes: List[str]) -> List[str]:
|
241 |
-
"""Convert CMU phonemes to Wav2Vec2 format"""
|
242 |
-
# Mapping from CMU to Wav2Vec2/eSpeak phonemes
|
243 |
-
cmu_to_espeak = {
|
244 |
-
"AA": "ɑ", "AE": "æ", "AH": "ʌ", "AO": "ɔ", "AW": "aʊ",
|
245 |
-
"AY": "aɪ", "EH": "ɛ", "ER": "ɝ", "EY": "eɪ", "IH": "ɪ",
|
246 |
-
"IY": "i", "OW": "oʊ", "OY": "ɔɪ", "UH": "ʊ", "UW": "u",
|
247 |
-
"B": "b", "CH": "tʃ", "D": "d", "DH": "ð", "F": "f",
|
248 |
-
"G": "ɡ", "HH": "h", "JH": "dʒ", "K": "k", "L": "l",
|
249 |
-
"M": "m", "N": "n", "NG": "ŋ", "P": "p", "R": "r",
|
250 |
-
"S": "s", "SH": "ʃ", "T": "t", "TH": "θ", "V": "v",
|
251 |
-
"W": "w", "Y": "j", "Z": "z", "ZH": "ʒ"
|
252 |
-
}
|
253 |
-
|
254 |
-
converted = []
|
255 |
-
for phoneme in cmu_phonemes:
|
256 |
-
converted_phoneme = cmu_to_espeak.get(phoneme, phoneme.lower())
|
257 |
-
converted.append(converted_phoneme)
|
258 |
-
|
259 |
-
return converted
|
260 |
-
|
261 |
-
def _get_ipa(self, word: str) -> str:
|
262 |
-
"""Get IPA transcription"""
|
263 |
-
try:
|
264 |
-
return ipa.convert(word)
|
265 |
-
except:
|
266 |
-
return f"/{word}/"
|
267 |
-
|
268 |
-
def _estimate_phonemes(self, word: str) -> List[str]:
|
269 |
-
"""Estimate phonemes for unknown words"""
|
270 |
-
# Basic phoneme estimation with eSpeak-style output
|
271 |
-
phoneme_map = {
|
272 |
-
"ch": ["tʃ"], "sh": ["ʃ"], "th": ["θ"], "ph": ["f"],
|
273 |
-
"ck": ["k"], "ng": ["ŋ"], "qu": ["k", "w"],
|
274 |
-
"a": ["æ"], "e": ["ɛ"], "i": ["ɪ"], "o": ["ʌ"], "u": ["ʌ"],
|
275 |
-
"b": ["b"], "c": ["k"], "d": ["d"], "f": ["f"], "g": ["ɡ"],
|
276 |
-
"h": ["h"], "j": ["dʒ"], "k": ["k"], "l": ["l"], "m": ["m"],
|
277 |
-
"n": ["n"], "p": ["p"], "r": ["r"], "s": ["s"], "t": ["t"],
|
278 |
-
"v": ["v"], "w": ["w"], "x": ["k", "s"], "y": ["j"], "z": ["z"]
|
279 |
-
}
|
280 |
-
|
281 |
-
word = word.lower()
|
282 |
-
phonemes = []
|
283 |
-
i = 0
|
284 |
-
|
285 |
-
while i < len(word):
|
286 |
-
# Check 2-letter combinations first
|
287 |
-
if i <= len(word) - 2:
|
288 |
-
two_char = word[i:i+2]
|
289 |
-
if two_char in phoneme_map:
|
290 |
-
phonemes.extend(phoneme_map[two_char])
|
291 |
-
i += 2
|
292 |
-
continue
|
293 |
-
|
294 |
-
# Single character
|
295 |
-
char = word[i]
|
296 |
-
if char in phoneme_map:
|
297 |
-
phonemes.extend(phoneme_map[char])
|
298 |
-
|
299 |
-
i += 1
|
300 |
-
|
301 |
-
return phonemes
|
302 |
-
|
303 |
-
# =============================================================================
|
304 |
-
# PHONEME COMPARATOR
|
305 |
-
# =============================================================================
|
306 |
-
|
307 |
-
class PhonemeComparator:
|
308 |
-
"""Compare reference and learner phoneme sequences"""
|
309 |
-
|
310 |
-
def __init__(self):
|
311 |
-
# Vietnamese speakers' common phoneme substitutions
|
312 |
-
self.substitution_patterns = {
|
313 |
-
"θ": ["f", "s", "t"], # TH → F, S, T
|
314 |
-
"ð": ["d", "z", "v"], # DH → D, Z, V
|
315 |
-
"v": ["w", "f"], # V → W, F
|
316 |
-
"r": ["l"], # R → L
|
317 |
-
"l": ["r"], # L → R
|
318 |
-
"z": ["s"], # Z → S
|
319 |
-
"ʒ": ["ʃ", "z"], # ZH → SH, Z
|
320 |
-
"ŋ": ["n"], # NG → N
|
321 |
-
}
|
322 |
-
|
323 |
-
# Difficulty levels for Vietnamese speakers
|
324 |
-
self.difficulty_map = {
|
325 |
-
"θ": 0.9, # th (think)
|
326 |
-
"ð": 0.9, # th (this)
|
327 |
-
"v": 0.8, # v
|
328 |
-
"z": 0.8, # z
|
329 |
-
"ʒ": 0.9, # zh (measure)
|
330 |
-
"r": 0.7, # r
|
331 |
-
"l": 0.6, # l
|
332 |
-
"w": 0.5, # w
|
333 |
-
"f": 0.4, # f
|
334 |
-
"s": 0.3, # s
|
335 |
-
"ʃ": 0.5, # sh
|
336 |
-
"tʃ": 0.4, # ch
|
337 |
-
"dʒ": 0.5, # j
|
338 |
-
"ŋ": 0.3, # ng
|
339 |
-
}
|
340 |
-
|
341 |
-
def compare_phoneme_sequences(self, reference_phonemes: str,
|
342 |
-
learner_phonemes: str) -> List[Dict]:
|
343 |
-
"""Compare reference and learner phoneme sequences"""
|
344 |
-
|
345 |
-
# Split phoneme strings
|
346 |
-
ref_phones = reference_phonemes.split()
|
347 |
-
learner_phones = learner_phonemes.split()
|
348 |
-
|
349 |
-
print(f"Reference phonemes: {ref_phones}")
|
350 |
-
print(f"Learner phonemes: {learner_phones}")
|
351 |
-
|
352 |
-
# Simple alignment comparison
|
353 |
-
comparisons = []
|
354 |
-
max_len = max(len(ref_phones), len(learner_phones))
|
355 |
-
|
356 |
-
for i in range(max_len):
|
357 |
-
ref_phoneme = ref_phones[i] if i < len(ref_phones) else ""
|
358 |
-
learner_phoneme = learner_phones[i] if i < len(learner_phones) else ""
|
359 |
-
|
360 |
-
if ref_phoneme and learner_phoneme:
|
361 |
-
# Both present - check accuracy
|
362 |
-
if ref_phoneme == learner_phoneme:
|
363 |
-
status = "correct"
|
364 |
-
score = 1.0
|
365 |
-
elif self._is_acceptable_substitution(ref_phoneme, learner_phoneme):
|
366 |
-
status = "acceptable"
|
367 |
-
score = 0.7
|
368 |
-
else:
|
369 |
-
status = "wrong"
|
370 |
-
score = 0.2
|
371 |
-
|
372 |
-
elif ref_phoneme and not learner_phoneme:
|
373 |
-
# Missing phoneme
|
374 |
-
status = "missing"
|
375 |
-
score = 0.0
|
376 |
-
|
377 |
-
elif learner_phoneme and not ref_phoneme:
|
378 |
-
# Extra phoneme
|
379 |
-
status = "extra"
|
380 |
-
score = 0.0
|
381 |
-
else:
|
382 |
-
continue
|
383 |
-
|
384 |
-
comparison = {
|
385 |
-
"position": i,
|
386 |
-
"reference_phoneme": ref_phoneme,
|
387 |
-
"learner_phoneme": learner_phoneme,
|
388 |
-
"status": status,
|
389 |
-
"score": score,
|
390 |
-
"difficulty": self.difficulty_map.get(ref_phoneme, 0.3)
|
391 |
-
}
|
392 |
-
|
393 |
-
comparisons.append(comparison)
|
394 |
-
|
395 |
-
return comparisons
|
396 |
-
|
397 |
-
def _is_acceptable_substitution(self, reference: str, learner: str) -> bool:
|
398 |
-
"""Check if learner phoneme is acceptable substitution for Vietnamese speakers"""
|
399 |
-
acceptable = self.substitution_patterns.get(reference, [])
|
400 |
-
return learner in acceptable
|
401 |
-
|
402 |
-
# =============================================================================
|
403 |
-
# WORD ANALYZER
|
404 |
-
# =============================================================================
|
405 |
-
|
406 |
-
class WordAnalyzer:
|
407 |
-
"""Analyze word-level pronunciation accuracy using character-based ASR"""
|
408 |
-
|
409 |
-
def __init__(self):
|
410 |
-
self.g2p = SimpleG2P()
|
411 |
-
self.comparator = PhonemeComparator()
|
412 |
-
|
413 |
-
def analyze_words(self, reference_text: str, learner_phonemes: str) -> Dict:
|
414 |
-
"""Analyze word-level pronunciation using phoneme representation from character ASR"""
|
415 |
-
|
416 |
-
# Get reference phonemes by word
|
417 |
-
reference_words = self.g2p.text_to_phonemes(reference_text)
|
418 |
-
|
419 |
-
# Get overall phoneme comparison
|
420 |
-
reference_phoneme_string = self.g2p.get_reference_phoneme_string(reference_text)
|
421 |
-
phoneme_comparisons = self.comparator.compare_phoneme_sequences(
|
422 |
-
reference_phoneme_string, learner_phonemes
|
423 |
-
)
|
424 |
-
|
425 |
-
# Map phonemes back to words
|
426 |
-
word_highlights = self._create_word_highlights(reference_words, phoneme_comparisons)
|
427 |
-
|
428 |
-
# Identify wrong words
|
429 |
-
wrong_words = self._identify_wrong_words(word_highlights, phoneme_comparisons)
|
430 |
-
|
431 |
-
return {
|
432 |
-
"word_highlights": word_highlights,
|
433 |
-
"phoneme_differences": phoneme_comparisons,
|
434 |
-
"wrong_words": wrong_words
|
435 |
-
}
|
436 |
-
|
437 |
-
def _create_word_highlights(self, reference_words: List[Dict],
|
438 |
-
phoneme_comparisons: List[Dict]) -> List[Dict]:
|
439 |
-
"""Create word highlighting data"""
|
440 |
-
|
441 |
-
word_highlights = []
|
442 |
-
phoneme_index = 0
|
443 |
-
|
444 |
-
for word_data in reference_words:
|
445 |
-
word = word_data["word"]
|
446 |
-
word_phonemes = word_data["phonemes"]
|
447 |
-
num_phonemes = len(word_phonemes)
|
448 |
-
|
449 |
-
# Get phoneme scores for this word
|
450 |
-
word_phoneme_scores = []
|
451 |
-
for j in range(num_phonemes):
|
452 |
-
if phoneme_index + j < len(phoneme_comparisons):
|
453 |
-
comparison = phoneme_comparisons[phoneme_index + j]
|
454 |
-
word_phoneme_scores.append(comparison["score"])
|
455 |
-
|
456 |
-
# Calculate word score
|
457 |
-
word_score = np.mean(word_phoneme_scores) if word_phoneme_scores else 0.0
|
458 |
-
|
459 |
-
# Create word highlight
|
460 |
-
highlight = {
|
461 |
-
"word": word,
|
462 |
-
"score": float(word_score),
|
463 |
-
"status": self._get_word_status(word_score),
|
464 |
-
"color": self._get_word_color(word_score),
|
465 |
-
"phonemes": word_phonemes,
|
466 |
-
"ipa": word_data["ipa"],
|
467 |
-
"phoneme_scores": word_phoneme_scores,
|
468 |
-
"phoneme_start_index": phoneme_index,
|
469 |
-
"phoneme_end_index": phoneme_index + num_phonemes - 1
|
470 |
-
}
|
471 |
-
|
472 |
-
word_highlights.append(highlight)
|
473 |
-
phoneme_index += num_phonemes
|
474 |
-
|
475 |
-
return word_highlights
|
476 |
-
|
477 |
-
def _identify_wrong_words(self, word_highlights: List[Dict],
|
478 |
-
phoneme_comparisons: List[Dict]) -> List[Dict]:
|
479 |
-
"""Identify words that were pronounced incorrectly"""
|
480 |
-
|
481 |
-
wrong_words = []
|
482 |
-
|
483 |
-
for word_highlight in word_highlights:
|
484 |
-
if word_highlight["score"] < 0.6: # Threshold for wrong pronunciation
|
485 |
-
|
486 |
-
# Find specific phoneme errors for this word
|
487 |
-
start_idx = word_highlight["phoneme_start_index"]
|
488 |
-
end_idx = word_highlight["phoneme_end_index"]
|
489 |
-
|
490 |
-
wrong_phonemes = []
|
491 |
-
missing_phonemes = []
|
492 |
-
|
493 |
-
for i in range(start_idx, min(end_idx + 1, len(phoneme_comparisons))):
|
494 |
-
comparison = phoneme_comparisons[i]
|
495 |
-
|
496 |
-
if comparison["status"] == "wrong":
|
497 |
-
wrong_phonemes.append({
|
498 |
-
"expected": comparison["reference_phoneme"],
|
499 |
-
"actual": comparison["learner_phoneme"],
|
500 |
-
"difficulty": comparison["difficulty"]
|
501 |
-
})
|
502 |
-
elif comparison["status"] == "missing":
|
503 |
-
missing_phonemes.append({
|
504 |
-
"phoneme": comparison["reference_phoneme"],
|
505 |
-
"difficulty": comparison["difficulty"]
|
506 |
-
})
|
507 |
-
|
508 |
-
wrong_word = {
|
509 |
-
"word": word_highlight["word"],
|
510 |
-
"score": word_highlight["score"],
|
511 |
-
"expected_phonemes": word_highlight["phonemes"],
|
512 |
-
"ipa": word_highlight["ipa"],
|
513 |
-
"wrong_phonemes": wrong_phonemes,
|
514 |
-
"missing_phonemes": missing_phonemes,
|
515 |
-
"tips": self._get_vietnamese_tips(wrong_phonemes, missing_phonemes)
|
516 |
-
}
|
517 |
-
|
518 |
-
wrong_words.append(wrong_word)
|
519 |
-
|
520 |
-
return wrong_words
|
521 |
-
|
522 |
-
def _get_word_status(self, score: float) -> str:
|
523 |
-
"""Get word status from score"""
|
524 |
-
if score >= 0.8:
|
525 |
-
return "excellent"
|
526 |
-
elif score >= 0.6:
|
527 |
-
return "good"
|
528 |
-
elif score >= 0.4:
|
529 |
-
return "needs_practice"
|
530 |
-
else:
|
531 |
-
return "poor"
|
532 |
-
|
533 |
-
def _get_word_color(self, score: float) -> str:
|
534 |
-
"""Get color for word highlighting"""
|
535 |
-
if score >= 0.8:
|
536 |
-
return "#22c55e" # Green
|
537 |
-
elif score >= 0.6:
|
538 |
-
return "#84cc16" # Light green
|
539 |
-
elif score >= 0.4:
|
540 |
-
return "#eab308" # Yellow
|
541 |
-
else:
|
542 |
-
return "#ef4444" # Red
|
543 |
-
|
544 |
-
def _get_vietnamese_tips(self, wrong_phonemes: List[Dict],
|
545 |
-
missing_phonemes: List[Dict]) -> List[str]:
|
546 |
-
"""Get Vietnamese-specific pronunciation tips"""
|
547 |
-
|
548 |
-
tips = []
|
549 |
-
|
550 |
-
# Tips for specific Vietnamese pronunciation challenges
|
551 |
-
vietnamese_tips = {
|
552 |
-
"θ": "Đặt lưỡi giữa răng trên và dưới, thổi nhẹ (think, three)",
|
553 |
-
"ð": "Giống θ nhưng rung dây thanh âm (this, that)",
|
554 |
-
"v": "Chạm môi dưới vào răng trên, không dùng cả hai môi như tiếng Việt",
|
555 |
-
"r": "Cuộn lưỡi nhưng không chạm vào vòm miệng, không lăn lưỡi",
|
556 |
-
"l": "Đầu lưỡi chạm vào vòm miệng sau răng",
|
557 |
-
"z": "Giống âm 's' nhưng có rung dây thanh âm",
|
558 |
-
"ʒ": "Giống âm 'ʃ' (sh) nhưng có rung dây thanh âm",
|
559 |
-
"w": "Tròn môi như âm 'u', không dùng răng như âm 'v'"
|
560 |
-
}
|
561 |
-
|
562 |
-
# Add tips for wrong phonemes
|
563 |
-
for wrong in wrong_phonemes:
|
564 |
-
expected = wrong["expected"]
|
565 |
-
actual = wrong["actual"]
|
566 |
-
|
567 |
-
if expected in vietnamese_tips:
|
568 |
-
tips.append(f"Âm '{expected}': {vietnamese_tips[expected]}")
|
569 |
-
else:
|
570 |
-
tips.append(f"Luyện âm '{expected}' thay vì '{actual}'")
|
571 |
-
|
572 |
-
# Add tips for missing phonemes
|
573 |
-
for missing in missing_phonemes:
|
574 |
-
phoneme = missing["phoneme"]
|
575 |
-
if phoneme in vietnamese_tips:
|
576 |
-
tips.append(f"Thiếu âm '{phoneme}': {vietnamese_tips[phoneme]}")
|
577 |
-
|
578 |
-
return tips
|
579 |
-
|
580 |
-
# =============================================================================
|
581 |
-
# FEEDBACK GENERATOR
|
582 |
-
# =============================================================================
|
583 |
-
|
584 |
-
class SimpleFeedbackGenerator:
|
585 |
-
"""Generate simple, actionable feedback in Vietnamese"""
|
586 |
-
|
587 |
-
def generate_feedback(self, overall_score: float, wrong_words: List[Dict],
|
588 |
-
phoneme_comparisons: List[Dict]) -> List[str]:
|
589 |
-
"""Generate Vietnamese feedback"""
|
590 |
-
|
591 |
-
feedback = []
|
592 |
-
|
593 |
-
# Overall feedback in Vietnamese
|
594 |
-
if overall_score >= 0.8:
|
595 |
-
feedback.append("Phát âm rất tốt! Bạn đã làm xuất sắc.")
|
596 |
-
elif overall_score >= 0.6:
|
597 |
-
feedback.append("Phát âm khá tốt, còn một vài điểm cần cải thiện.")
|
598 |
-
elif overall_score >= 0.4:
|
599 |
-
feedback.append("Cần luyện tập thêm. Tập trung vào những từ được đánh dấu đỏ.")
|
600 |
-
else:
|
601 |
-
feedback.append("Hãy luyện tập chậm và rõ ràng hơn.")
|
602 |
-
|
603 |
-
# Wrong words feedback
|
604 |
-
if wrong_words:
|
605 |
-
if len(wrong_words) <= 3:
|
606 |
-
word_names = [w["word"] for w in wrong_words]
|
607 |
-
feedback.append(f"Các từ cần luyện tập: {', '.join(word_names)}")
|
608 |
-
else:
|
609 |
-
feedback.append(f"Có {len(wrong_words)} từ cần luyện tập. Tập trung vào từng từ một.")
|
610 |
-
|
611 |
-
# Most problematic phonemes
|
612 |
-
problem_phonemes = defaultdict(int)
|
613 |
-
for comparison in phoneme_comparisons:
|
614 |
-
if comparison["status"] in ["wrong", "missing"]:
|
615 |
-
phoneme = comparison["reference_phoneme"]
|
616 |
-
problem_phonemes[phoneme] += 1
|
617 |
-
|
618 |
-
if problem_phonemes:
|
619 |
-
most_difficult = sorted(problem_phonemes.items(), key=lambda x: x[1], reverse=True)
|
620 |
-
top_problem = most_difficult[0][0]
|
621 |
-
|
622 |
-
phoneme_tips = {
|
623 |
-
"θ": "Lưỡi giữa răng, thổi nhẹ",
|
624 |
-
"ð": "Lưỡi giữa răng, rung dây thanh",
|
625 |
-
"v": "Môi dưới chạm răng trên",
|
626 |
-
"r": "Cuộn lưỡi, không chạm vòm miệng",
|
627 |
-
"l": "Lưỡi chạm vòm miệng",
|
628 |
-
"z": "Như 's' nhưng rung dây thanh"
|
629 |
-
}
|
630 |
-
|
631 |
-
if top_problem in phoneme_tips:
|
632 |
-
feedback.append(f"Âm khó nhất '{top_problem}': {phoneme_tips[top_problem]}")
|
633 |
-
|
634 |
-
return feedback
|
635 |
-
|
636 |
-
# =============================================================================
|
637 |
-
# MAIN PRONUNCIATION ASSESSOR
|
638 |
-
# =============================================================================
|
639 |
-
|
640 |
-
class SimplePronunciationAssessor:
|
641 |
-
"""Main pronunciation assessor using Wav2Vec2 character-level model"""
|
642 |
-
|
643 |
-
def __init__(self):
|
644 |
-
print("Initializing Simple Pronunciation Assessor...")
|
645 |
-
self.asr = Wav2Vec2CharacterASR() # Updated to use character-based ASR
|
646 |
-
self.word_analyzer = WordAnalyzer()
|
647 |
-
self.feedback_generator = SimpleFeedbackGenerator()
|
648 |
-
print("Initialization completed")
|
649 |
-
|
650 |
-
def assess_pronunciation(self, audio_path: str, reference_text: str) -> Dict:
|
651 |
-
"""
|
652 |
-
Main assessment function
|
653 |
-
Input: Audio path + Reference text
|
654 |
-
Output: Word highlights + Phoneme differences + Wrong words
|
655 |
-
"""
|
656 |
-
|
657 |
-
print("Starting pronunciation assessment...")
|
658 |
-
|
659 |
-
# Step 1: Wav2Vec2 character transcription (no language model)
|
660 |
-
print("Step 1: Transcribing to characters...")
|
661 |
-
asr_result = self.asr.transcribe_to_characters(audio_path)
|
662 |
-
character_transcript = asr_result["character_transcript"]
|
663 |
-
phoneme_representation = asr_result["phoneme_representation"]
|
664 |
-
|
665 |
-
print(f"Character transcript: {character_transcript}")
|
666 |
-
print(f"Phoneme representation: {phoneme_representation}")
|
667 |
-
|
668 |
-
# Step 2: Word analysis using phoneme representation
|
669 |
-
print("Step 2: Analyzing words...")
|
670 |
-
analysis_result = self.word_analyzer.analyze_words(reference_text, phoneme_representation)
|
671 |
-
|
672 |
-
# Step 3: Calculate overall score
|
673 |
-
phoneme_comparisons = analysis_result["phoneme_differences"]
|
674 |
-
overall_score = self._calculate_overall_score(phoneme_comparisons)
|
675 |
-
|
676 |
-
# Step 4: Generate feedback
|
677 |
-
print("Step 3: Generating feedback...")
|
678 |
-
feedback = self.feedback_generator.generate_feedback(
|
679 |
-
overall_score, analysis_result["wrong_words"], phoneme_comparisons
|
680 |
-
)
|
681 |
-
|
682 |
-
result = {
|
683 |
-
"transcript": character_transcript, # What user actually said
|
684 |
-
"transcript_phonemes": phoneme_representation,
|
685 |
-
"user_phonemes": phoneme_representation, # Alias for UI clarity
|
686 |
-
"character_transcript": character_transcript,
|
687 |
-
"overall_score": overall_score,
|
688 |
-
"word_highlights": analysis_result["word_highlights"],
|
689 |
-
"phoneme_differences": phoneme_comparisons,
|
690 |
-
"wrong_words": analysis_result["wrong_words"],
|
691 |
-
"feedback": feedback,
|
692 |
-
"processing_info": {
|
693 |
-
"model_used": f"Wav2Vec2-Character ({self.asr.model_name})",
|
694 |
-
"character_based": True,
|
695 |
-
"language_model_correction": False,
|
696 |
-
"raw_output": True
|
697 |
-
}
|
698 |
-
}
|
699 |
-
|
700 |
-
print("Assessment completed successfully")
|
701 |
-
return result
|
702 |
-
|
703 |
-
def _calculate_overall_score(self, phoneme_comparisons: List[Dict]) -> float:
|
704 |
-
"""Calculate overall pronunciation score"""
|
705 |
-
if not phoneme_comparisons:
|
706 |
-
return 0.0
|
707 |
-
|
708 |
-
total_score = sum(comparison["score"] for comparison in phoneme_comparisons)
|
709 |
-
return total_score / len(phoneme_comparisons)
|
710 |
-
|
711 |
-
# =============================================================================
|
712 |
-
# API ENDPOINT
|
713 |
-
# =============================================================================
|
714 |
|
715 |
-
# Initialize assessor
|
716 |
assessor = SimplePronunciationAssessor()
|
717 |
|
718 |
-
def convert_numpy_types(obj):
|
719 |
-
"""Convert numpy types to Python native types"""
|
720 |
-
if isinstance(obj, np.integer):
|
721 |
-
return int(obj)
|
722 |
-
elif isinstance(obj, np.floating):
|
723 |
-
return float(obj)
|
724 |
-
elif isinstance(obj, np.ndarray):
|
725 |
-
return obj.tolist()
|
726 |
-
elif isinstance(obj, dict):
|
727 |
-
return {key: convert_numpy_types(value) for key, value in obj.items()}
|
728 |
-
elif isinstance(obj, list):
|
729 |
-
return [convert_numpy_types(item) for item in obj]
|
730 |
-
else:
|
731 |
-
return obj
|
732 |
|
733 |
@router.post("/assess", response_model=PronunciationAssessmentResult)
|
734 |
async def assess_pronunciation(
|
735 |
audio: UploadFile = File(..., description="Audio file (.wav, .mp3, .m4a)"),
|
736 |
-
reference_text: str = Form(..., description="Reference text to pronounce")
|
|
|
|
|
|
|
|
|
737 |
):
|
738 |
"""
|
739 |
-
Pronunciation Assessment API
|
740 |
-
|
741 |
Key Features:
|
742 |
-
- Uses
|
743 |
-
-
|
|
|
744 |
- Character-level accuracy converted to phoneme representation
|
745 |
- Vietnamese-optimized feedback and tips
|
746 |
-
|
747 |
-
Input: Audio file + Reference text
|
748 |
Output: Word highlights + Phoneme differences + Wrong words
|
749 |
"""
|
750 |
-
|
751 |
import time
|
|
|
752 |
start_time = time.time()
|
753 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
754 |
# Validate inputs
|
755 |
if not reference_text.strip():
|
756 |
raise HTTPException(status_code=400, detail="Reference text cannot be empty")
|
757 |
-
|
758 |
if len(reference_text) > 500:
|
759 |
-
raise HTTPException(
|
760 |
-
|
|
|
|
|
761 |
# Check for valid English characters
|
762 |
if not re.match(r"^[a-zA-Z\s\'\-\.!?,;:]+$", reference_text):
|
763 |
raise HTTPException(
|
764 |
status_code=400,
|
765 |
-
detail="Text must contain only English letters, spaces, and basic punctuation"
|
766 |
)
|
767 |
-
|
768 |
try:
|
769 |
# Save uploaded file temporarily
|
770 |
file_extension = ".wav"
|
771 |
if audio.filename and "." in audio.filename:
|
772 |
file_extension = f".{audio.filename.split('.')[-1]}"
|
773 |
-
|
774 |
-
with tempfile.NamedTemporaryFile(
|
|
|
|
|
775 |
content = await audio.read()
|
776 |
tmp_file.write(content)
|
777 |
tmp_file.flush()
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
# Run assessment using
|
782 |
-
result = assessor.assess_pronunciation(tmp_file.name, reference_text)
|
783 |
-
|
784 |
-
|
785 |
# Add processing time
|
786 |
processing_time = time.time() - start_time
|
787 |
result["processing_info"]["processing_time"] = processing_time
|
788 |
-
|
789 |
# Convert numpy types for JSON serialization
|
790 |
final_result = convert_numpy_types(result)
|
791 |
-
|
792 |
-
|
793 |
-
|
|
|
|
|
794 |
return PronunciationAssessmentResult(**final_result)
|
795 |
-
|
796 |
except Exception as e:
|
797 |
-
|
798 |
import traceback
|
|
|
799 |
traceback.print_exc()
|
800 |
raise HTTPException(status_code=500, detail=f"Assessment failed: {str(e)}")
|
801 |
|
|
|
802 |
# =============================================================================
|
803 |
# UTILITY ENDPOINTS
|
804 |
# =============================================================================
|
805 |
|
|
|
806 |
@router.get("/phonemes/{word}")
|
807 |
async def get_word_phonemes(word: str):
|
808 |
"""Get phoneme breakdown for a specific word"""
|
809 |
try:
|
810 |
g2p = SimpleG2P()
|
811 |
phoneme_data = g2p.text_to_phonemes(word)[0]
|
812 |
-
|
813 |
# Add difficulty analysis for Vietnamese speakers
|
814 |
difficulty_scores = []
|
815 |
comparator = PhonemeComparator()
|
816 |
-
|
817 |
for phoneme in phoneme_data["phonemes"]:
|
818 |
difficulty = comparator.difficulty_map.get(phoneme, 0.3)
|
819 |
difficulty_scores.append(difficulty)
|
820 |
-
|
821 |
avg_difficulty = float(np.mean(difficulty_scores)) if difficulty_scores else 0.3
|
822 |
-
|
823 |
return {
|
824 |
"word": word,
|
825 |
"phonemes": phoneme_data["phonemes"],
|
826 |
"phoneme_string": phoneme_data["phoneme_string"],
|
827 |
"ipa": phoneme_data["ipa"],
|
828 |
"difficulty_score": avg_difficulty,
|
829 |
-
"difficulty_level":
|
|
|
|
|
|
|
|
|
830 |
"challenging_phonemes": [
|
831 |
{
|
832 |
"phoneme": p,
|
833 |
"difficulty": comparator.difficulty_map.get(p, 0.3),
|
834 |
-
"vietnamese_tip": get_vietnamese_tip(p)
|
835 |
}
|
836 |
for p in phoneme_data["phonemes"]
|
837 |
if comparator.difficulty_map.get(p, 0.3) > 0.6
|
838 |
-
]
|
839 |
-
}
|
840 |
-
|
841 |
-
except Exception as e:
|
842 |
-
raise HTTPException(status_code=500, detail=f"Word analysis error: {str(e)}")
|
843 |
-
|
844 |
-
@router.get("/health")
|
845 |
-
async def health_check():
|
846 |
-
"""Health check endpoint"""
|
847 |
-
try:
|
848 |
-
model_info = {
|
849 |
-
"status": "healthy",
|
850 |
-
"model": assessor.asr.model_name,
|
851 |
-
"character_based": True,
|
852 |
-
"language_model_correction": False,
|
853 |
-
"vietnamese_optimized": True
|
854 |
-
}
|
855 |
-
return model_info
|
856 |
-
except Exception as e:
|
857 |
-
return {
|
858 |
-
"status": "error",
|
859 |
-
"error": str(e)
|
860 |
}
|
861 |
|
862 |
-
@router.get("/test-model")
|
863 |
-
async def test_model():
|
864 |
-
"""Test if Wav2Vec2 model is working"""
|
865 |
-
try:
|
866 |
-
# Test model info
|
867 |
-
test_result = {
|
868 |
-
"model_loaded": True,
|
869 |
-
"model_name": assessor.asr.model_name,
|
870 |
-
"processor_ready": True,
|
871 |
-
"sample_rate": assessor.asr.sample_rate,
|
872 |
-
"sample_characters": "this is a test",
|
873 |
-
"sample_phonemes": "ðɪs ɪz ə tɛst"
|
874 |
-
}
|
875 |
-
return test_result
|
876 |
except Exception as e:
|
877 |
-
|
878 |
-
"model_loaded": False,
|
879 |
-
"error": str(e)
|
880 |
-
}
|
881 |
|
882 |
-
# =============================================================================
|
883 |
-
# HELPER FUNCTIONS
|
884 |
-
# =============================================================================
|
885 |
|
886 |
def get_vietnamese_tip(phoneme: str) -> str:
|
887 |
"""Get Vietnamese pronunciation tip for a phoneme"""
|
@@ -889,10 +176,10 @@ def get_vietnamese_tip(phoneme: str) -> str:
|
|
889 |
"θ": "Đặt lưỡi giữa răng, thổi nhẹ",
|
890 |
"ð": "Giống θ nhưng rung dây thanh âm",
|
891 |
"v": "Môi dưới chạm răng trên",
|
892 |
-
"r": "Cuộn lưỡi, không chạm vòm miệng",
|
893 |
"l": "Lưỡi chạm vòm miệng sau răng",
|
894 |
"z": "Như 's' nhưng rung dây thanh",
|
895 |
"ʒ": "Như 'ʃ' nhưng rung dây thanh",
|
896 |
-
"w": "Tròn môi như 'u'"
|
897 |
}
|
898 |
return tips.get(phoneme, f"Luyện âm {phoneme}")
|
|
|
1 |
+
from fastapi import UploadFile, File, Form, HTTPException, APIRouter
|
|
|
|
|
|
|
|
|
|
|
2 |
from pydantic import BaseModel
|
3 |
+
from typing import List, Dict
|
4 |
import tempfile
|
|
|
5 |
import numpy as np
|
|
|
|
|
|
|
|
|
6 |
import re
|
|
|
7 |
import warnings
|
8 |
+
from loguru import logger
|
9 |
+
from src.apis.controllers.speaking_controller import (
|
10 |
+
SimpleG2P,
|
11 |
+
PhonemeComparator,
|
12 |
+
SimplePronunciationAssessor,
|
13 |
+
convert_numpy_types,
|
14 |
+
)
|
15 |
|
16 |
warnings.filterwarnings("ignore")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
router = APIRouter(prefix="/pronunciation", tags=["Pronunciation"])
|
19 |
|
20 |
+
|
21 |
class PronunciationAssessmentResult(BaseModel):
|
22 |
transcript: str # What the user actually said (character transcript)
|
23 |
transcript_phonemes: str # User's phonemes
|
|
|
30 |
feedback: List[str]
|
31 |
processing_info: Dict
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
34 |
assessor = SimplePronunciationAssessor()
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
@router.post("/assess", response_model=PronunciationAssessmentResult)
|
38 |
async def assess_pronunciation(
|
39 |
audio: UploadFile = File(..., description="Audio file (.wav, .mp3, .m4a)"),
|
40 |
+
reference_text: str = Form(..., description="Reference text to pronounce"),
|
41 |
+
mode: str = Form(
|
42 |
+
"normal",
|
43 |
+
description="Assessment mode: 'normal' (Whisper) or 'advanced' (Wav2Vec2)",
|
44 |
+
),
|
45 |
):
|
46 |
"""
|
47 |
+
Pronunciation Assessment API with mode selection
|
48 |
+
|
49 |
Key Features:
|
50 |
+
- Normal mode: Uses Whisper for more accurate transcription with language model
|
51 |
+
- Advanced mode: Uses facebook/wav2vec2-large-960h-lv60-self for character transcription
|
52 |
+
- NO language model correction in advanced mode (shows actual pronunciation errors)
|
53 |
- Character-level accuracy converted to phoneme representation
|
54 |
- Vietnamese-optimized feedback and tips
|
55 |
+
|
56 |
+
Input: Audio file + Reference text + Mode
|
57 |
Output: Word highlights + Phoneme differences + Wrong words
|
58 |
"""
|
59 |
+
|
60 |
import time
|
61 |
+
|
62 |
start_time = time.time()
|
63 |
+
|
64 |
+
# Validate mode
|
65 |
+
if mode not in ["normal", "advanced"]:
|
66 |
+
raise HTTPException(
|
67 |
+
status_code=400, detail="Mode must be 'normal' or 'advanced'"
|
68 |
+
)
|
69 |
+
|
70 |
# Validate inputs
|
71 |
if not reference_text.strip():
|
72 |
raise HTTPException(status_code=400, detail="Reference text cannot be empty")
|
73 |
+
|
74 |
if len(reference_text) > 500:
|
75 |
+
raise HTTPException(
|
76 |
+
status_code=400, detail="Reference text too long (max 500 characters)"
|
77 |
+
)
|
78 |
+
|
79 |
# Check for valid English characters
|
80 |
if not re.match(r"^[a-zA-Z\s\'\-\.!?,;:]+$", reference_text):
|
81 |
raise HTTPException(
|
82 |
status_code=400,
|
83 |
+
detail="Text must contain only English letters, spaces, and basic punctuation",
|
84 |
)
|
85 |
+
|
86 |
try:
|
87 |
# Save uploaded file temporarily
|
88 |
file_extension = ".wav"
|
89 |
if audio.filename and "." in audio.filename:
|
90 |
file_extension = f".{audio.filename.split('.')[-1]}"
|
91 |
+
|
92 |
+
with tempfile.NamedTemporaryFile(
|
93 |
+
delete=False, suffix=file_extension
|
94 |
+
) as tmp_file:
|
95 |
content = await audio.read()
|
96 |
tmp_file.write(content)
|
97 |
tmp_file.flush()
|
98 |
+
|
99 |
+
logger.info(f"Processing audio file: {tmp_file.name} with mode: {mode}")
|
100 |
+
|
101 |
+
# Run assessment using selected mode
|
102 |
+
result = assessor.assess_pronunciation(tmp_file.name, reference_text, mode)
|
103 |
+
|
|
|
104 |
# Add processing time
|
105 |
processing_time = time.time() - start_time
|
106 |
result["processing_info"]["processing_time"] = processing_time
|
107 |
+
|
108 |
# Convert numpy types for JSON serialization
|
109 |
final_result = convert_numpy_types(result)
|
110 |
+
|
111 |
+
logger.info(
|
112 |
+
f"Assessment completed in {processing_time:.2f} seconds using {mode} mode"
|
113 |
+
)
|
114 |
+
|
115 |
return PronunciationAssessmentResult(**final_result)
|
116 |
+
|
117 |
except Exception as e:
|
118 |
+
logger.error(f"Assessment error: {str(e)}")
|
119 |
import traceback
|
120 |
+
|
121 |
traceback.print_exc()
|
122 |
raise HTTPException(status_code=500, detail=f"Assessment failed: {str(e)}")
|
123 |
|
124 |
+
|
125 |
# =============================================================================
|
126 |
# UTILITY ENDPOINTS
|
127 |
# =============================================================================
|
128 |
|
129 |
+
|
130 |
@router.get("/phonemes/{word}")
|
131 |
async def get_word_phonemes(word: str):
|
132 |
"""Get phoneme breakdown for a specific word"""
|
133 |
try:
|
134 |
g2p = SimpleG2P()
|
135 |
phoneme_data = g2p.text_to_phonemes(word)[0]
|
136 |
+
|
137 |
# Add difficulty analysis for Vietnamese speakers
|
138 |
difficulty_scores = []
|
139 |
comparator = PhonemeComparator()
|
140 |
+
|
141 |
for phoneme in phoneme_data["phonemes"]:
|
142 |
difficulty = comparator.difficulty_map.get(phoneme, 0.3)
|
143 |
difficulty_scores.append(difficulty)
|
144 |
+
|
145 |
avg_difficulty = float(np.mean(difficulty_scores)) if difficulty_scores else 0.3
|
146 |
+
|
147 |
return {
|
148 |
"word": word,
|
149 |
"phonemes": phoneme_data["phonemes"],
|
150 |
"phoneme_string": phoneme_data["phoneme_string"],
|
151 |
"ipa": phoneme_data["ipa"],
|
152 |
"difficulty_score": avg_difficulty,
|
153 |
+
"difficulty_level": (
|
154 |
+
"hard"
|
155 |
+
if avg_difficulty > 0.6
|
156 |
+
else "medium" if avg_difficulty > 0.4 else "easy"
|
157 |
+
),
|
158 |
"challenging_phonemes": [
|
159 |
{
|
160 |
"phoneme": p,
|
161 |
"difficulty": comparator.difficulty_map.get(p, 0.3),
|
162 |
+
"vietnamese_tip": get_vietnamese_tip(p),
|
163 |
}
|
164 |
for p in phoneme_data["phonemes"]
|
165 |
if comparator.difficulty_map.get(p, 0.3) > 0.6
|
166 |
+
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
}
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
except Exception as e:
|
170 |
+
raise HTTPException(status_code=500, detail=f"Word analysis error: {str(e)}")
|
|
|
|
|
|
|
171 |
|
|
|
|
|
|
|
172 |
|
173 |
def get_vietnamese_tip(phoneme: str) -> str:
|
174 |
"""Get Vietnamese pronunciation tip for a phoneme"""
|
|
|
176 |
"θ": "Đặt lưỡi giữa răng, thổi nhẹ",
|
177 |
"ð": "Giống θ nhưng rung dây thanh âm",
|
178 |
"v": "Môi dưới chạm răng trên",
|
179 |
+
"r": "Cuộn lưỡi, không chạm vòm miệng",
|
180 |
"l": "Lưỡi chạm vòm miệng sau răng",
|
181 |
"z": "Như 's' nhưng rung dây thanh",
|
182 |
"ʒ": "Như 'ʃ' nhưng rung dây thanh",
|
183 |
+
"w": "Tròn môi như 'u'",
|
184 |
}
|
185 |
return tips.get(phoneme, f"Luyện âm {phoneme}")
|
src/model_convert/wav2vec2onnx.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import onnx
|
3 |
+
import onnxruntime
|
4 |
+
import numpy as np
|
5 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
6 |
+
from typing import Dict, Tuple
|
7 |
+
import librosa
|
8 |
+
import os
|
9 |
+
|
10 |
+
class Wav2Vec2ONNXConverter:
|
11 |
+
"""Convert Wav2Vec2 model to ONNX format"""
|
12 |
+
|
13 |
+
def __init__(self, model_name: str = "facebook/wav2vec2-base-960h"):
|
14 |
+
"""Initialize the converter with the specified model"""
|
15 |
+
print(f"Loading Wav2Vec2 model: {model_name}")
|
16 |
+
self.model_name = model_name
|
17 |
+
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
18 |
+
self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
19 |
+
|
20 |
+
# Disable flash attention and scaled_dot_product_attention for ONNX compatibility
|
21 |
+
if hasattr(self.model.config, 'use_flash_attention_2'):
|
22 |
+
self.model.config.use_flash_attention_2 = False
|
23 |
+
|
24 |
+
# Force model to use standard attention
|
25 |
+
if hasattr(self.model, 'wav2vec2') and hasattr(self.model.wav2vec2, 'encoder'):
|
26 |
+
for layer in self.model.wav2vec2.encoder.layers:
|
27 |
+
if hasattr(layer.attention, 'attention_dropout'):
|
28 |
+
# Ensure standard attention is used
|
29 |
+
layer.attention.attention_dropout = torch.nn.Dropout(layer.attention.attention_dropout.p)
|
30 |
+
|
31 |
+
self.model.eval()
|
32 |
+
self.sample_rate = 16000
|
33 |
+
print("Model loaded successfully")
|
34 |
+
|
35 |
+
def convert_to_onnx(self,
|
36 |
+
onnx_path: str = "wav2vec2_model.onnx",
|
37 |
+
input_length: int = 160000, # 10 seconds at 16kHz
|
38 |
+
opset_version: int = 14) -> str:
|
39 |
+
"""
|
40 |
+
Convert the Wav2Vec2 model to ONNX format
|
41 |
+
|
42 |
+
Args:
|
43 |
+
onnx_path: Path to save the ONNX model
|
44 |
+
input_length: Length of input audio (samples)
|
45 |
+
opset_version: ONNX opset version
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
Path to the saved ONNX model
|
49 |
+
"""
|
50 |
+
print(f"Converting model to ONNX format...")
|
51 |
+
|
52 |
+
# Create dummy input
|
53 |
+
dummy_input = torch.randn(1, input_length, dtype=torch.float32)
|
54 |
+
|
55 |
+
# Input names and dynamic axes
|
56 |
+
input_names = ["input_values"]
|
57 |
+
output_names = ["logits"]
|
58 |
+
|
59 |
+
# Dynamic axes for variable length input
|
60 |
+
dynamic_axes = {
|
61 |
+
"input_values": {0: "batch_size", 1: "sequence_length"},
|
62 |
+
"logits": {0: "batch_size", 1: "sequence_length"}
|
63 |
+
}
|
64 |
+
|
65 |
+
try:
|
66 |
+
# Disable torch optimizations that may cause ONNX issues
|
67 |
+
with torch.no_grad():
|
68 |
+
# Set model to evaluation mode and disable dropout
|
69 |
+
self.model.eval()
|
70 |
+
for module in self.model.modules():
|
71 |
+
if isinstance(module, torch.nn.Dropout):
|
72 |
+
module.p = 0.0
|
73 |
+
|
74 |
+
# Export to ONNX
|
75 |
+
torch.onnx.export(
|
76 |
+
self.model,
|
77 |
+
dummy_input,
|
78 |
+
onnx_path,
|
79 |
+
input_names=input_names,
|
80 |
+
output_names=output_names,
|
81 |
+
dynamic_axes=dynamic_axes,
|
82 |
+
opset_version=opset_version,
|
83 |
+
do_constant_folding=True,
|
84 |
+
verbose=False,
|
85 |
+
export_params=True,
|
86 |
+
training=torch.onnx.TrainingMode.EVAL,
|
87 |
+
operator_export_type=torch.onnx.OperatorExportTypes.ONNX
|
88 |
+
)
|
89 |
+
|
90 |
+
print(f"Model successfully exported to: {onnx_path}")
|
91 |
+
|
92 |
+
# Verify the exported model
|
93 |
+
self._verify_onnx_model(onnx_path, dummy_input)
|
94 |
+
|
95 |
+
return onnx_path
|
96 |
+
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error during ONNX conversion: {e}")
|
99 |
+
raise
|
100 |
+
|
101 |
+
def _verify_onnx_model(self, onnx_path: str, test_input: torch.Tensor):
|
102 |
+
"""Verify the exported ONNX model"""
|
103 |
+
print("Verifying ONNX model...")
|
104 |
+
|
105 |
+
try:
|
106 |
+
# Load and check ONNX model
|
107 |
+
onnx_model = onnx.load(onnx_path)
|
108 |
+
onnx.checker.check_model(onnx_model)
|
109 |
+
print("✓ ONNX model structure is valid")
|
110 |
+
|
111 |
+
# Test inference with ONNX Runtime
|
112 |
+
ort_session = onnxruntime.InferenceSession(onnx_path)
|
113 |
+
|
114 |
+
# Get model input/output info
|
115 |
+
input_name = ort_session.get_inputs()[0].name
|
116 |
+
output_name = ort_session.get_outputs()[0].name
|
117 |
+
|
118 |
+
print(f"✓ Input name: {input_name}")
|
119 |
+
print(f"✓ Output name: {output_name}")
|
120 |
+
|
121 |
+
# Run inference
|
122 |
+
ort_inputs = {input_name: test_input.numpy()}
|
123 |
+
ort_outputs = ort_session.run([output_name], ort_inputs)
|
124 |
+
|
125 |
+
# Compare with original PyTorch model
|
126 |
+
with torch.no_grad():
|
127 |
+
torch_output = self.model(test_input)
|
128 |
+
torch_logits = torch_output.logits
|
129 |
+
|
130 |
+
# Check output similarity
|
131 |
+
onnx_logits = ort_outputs[0]
|
132 |
+
max_diff = np.max(np.abs(torch_logits.numpy() - onnx_logits))
|
133 |
+
|
134 |
+
print(f"✓ Maximum difference between PyTorch and ONNX: {max_diff:.6f}")
|
135 |
+
|
136 |
+
if max_diff < 1e-4:
|
137 |
+
print("✓ ONNX model verification successful!")
|
138 |
+
else:
|
139 |
+
print("⚠ Warning: Large difference detected between models")
|
140 |
+
|
141 |
+
except Exception as e:
|
142 |
+
print(f"Error during verification: {e}")
|
143 |
+
raise
|
144 |
+
|
145 |
+
class Wav2Vec2ONNXInference:
|
146 |
+
"""ONNX inference class for Wav2Vec2"""
|
147 |
+
|
148 |
+
def __init__(self, onnx_path: str, processor_name: str = "facebook/wav2vec2-base-960h"):
|
149 |
+
"""Initialize ONNX inference"""
|
150 |
+
print(f"Loading ONNX model from: {onnx_path}")
|
151 |
+
|
152 |
+
# Load processor for tokenization
|
153 |
+
self.processor = Wav2Vec2Processor.from_pretrained(processor_name)
|
154 |
+
|
155 |
+
# Create ONNX Runtime session
|
156 |
+
self.session = onnxruntime.InferenceSession(onnx_path)
|
157 |
+
self.input_name = self.session.get_inputs()[0].name
|
158 |
+
self.output_name = self.session.get_outputs()[0].name
|
159 |
+
self.sample_rate = 16000
|
160 |
+
|
161 |
+
print("ONNX model loaded successfully")
|
162 |
+
|
163 |
+
def transcribe(self, audio_path: str) -> Dict:
|
164 |
+
"""Transcribe audio using ONNX model"""
|
165 |
+
try:
|
166 |
+
# Load audio
|
167 |
+
speech, sr = librosa.load(audio_path, sr=self.sample_rate)
|
168 |
+
|
169 |
+
# Prepare input
|
170 |
+
input_values = self.processor(
|
171 |
+
speech,
|
172 |
+
sampling_rate=self.sample_rate,
|
173 |
+
return_tensors="np"
|
174 |
+
).input_values
|
175 |
+
|
176 |
+
# Run ONNX inference
|
177 |
+
ort_inputs = {self.input_name: input_values}
|
178 |
+
ort_outputs = self.session.run([self.output_name], ort_inputs)
|
179 |
+
logits = ort_outputs[0]
|
180 |
+
|
181 |
+
# Decode predictions
|
182 |
+
predicted_ids = np.argmax(logits, axis=-1)
|
183 |
+
transcription = self.processor.batch_decode(predicted_ids)[0]
|
184 |
+
|
185 |
+
# Calculate confidence scores
|
186 |
+
confidence_scores = np.max(self._softmax(logits), axis=-1)[0]
|
187 |
+
|
188 |
+
return {
|
189 |
+
"transcription": transcription,
|
190 |
+
"confidence_scores": confidence_scores[:100].tolist(), # Limit for JSON
|
191 |
+
"predicted_ids": predicted_ids[0].tolist()
|
192 |
+
}
|
193 |
+
|
194 |
+
except Exception as e:
|
195 |
+
print(f"Transcription error: {e}")
|
196 |
+
return {
|
197 |
+
"transcription": "",
|
198 |
+
"confidence_scores": [],
|
199 |
+
"predicted_ids": []
|
200 |
+
}
|
201 |
+
|
202 |
+
def _softmax(self, x):
|
203 |
+
"""Apply softmax to logits"""
|
204 |
+
exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
|
205 |
+
return exp_x / np.sum(exp_x, axis=-1, keepdims=True)
|
206 |
+
|
207 |
+
# Example usage and testing
|
208 |
+
def main():
|
209 |
+
"""Example usage of the converter"""
|
210 |
+
|
211 |
+
# Method 1: Try standard conversion
|
212 |
+
try:
|
213 |
+
print("Method 1: Standard conversion...")
|
214 |
+
converter = Wav2Vec2ONNXConverter("facebook/wav2vec2-base-960h")
|
215 |
+
onnx_path = converter.convert_to_onnx(
|
216 |
+
onnx_path="wav2vec2_asr.onnx",
|
217 |
+
input_length=160000, # 10 seconds
|
218 |
+
opset_version=14 # Updated to version 14 for compatibility
|
219 |
+
)
|
220 |
+
print("✓ Standard conversion successful!")
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
print(f"✗ Standard conversion failed: {e}")
|
224 |
+
print("\nMethod 2: Trying fallback approach...")
|
225 |
+
|
226 |
+
try:
|
227 |
+
# Method 2: Use compatible model creation
|
228 |
+
model, processor = create_compatible_model("facebook/wav2vec2-base-960h")
|
229 |
+
onnx_path = export_with_fallback(
|
230 |
+
model,
|
231 |
+
processor,
|
232 |
+
"wav2vec2_asr_fallback.onnx",
|
233 |
+
input_length=160000
|
234 |
+
)
|
235 |
+
print("✓ Fallback conversion successful!")
|
236 |
+
|
237 |
+
except Exception as e2:
|
238 |
+
print(f"✗ All conversion methods failed: {e2}")
|
239 |
+
return
|
240 |
+
|
241 |
+
# Test ONNX inference
|
242 |
+
print("\nTesting ONNX inference...")
|
243 |
+
try:
|
244 |
+
onnx_inference = Wav2Vec2ONNXInference(onnx_path)
|
245 |
+
print("✓ ONNX model loaded successfully for inference")
|
246 |
+
|
247 |
+
# Create a test audio file (or use your own)
|
248 |
+
# result = onnx_inference.transcribe("test_audio.wav")
|
249 |
+
# print("Transcription:", result["transcription"])
|
250 |
+
|
251 |
+
except Exception as e:
|
252 |
+
print(f"✗ ONNX inference test failed: {e}")
|
253 |
+
|
254 |
+
print("Conversion process completed!")
|
255 |
+
|
256 |
+
# Additional utility functions
|
257 |
+
def create_compatible_model(model_name: str = "facebook/wav2vec2-base-960h"):
|
258 |
+
"""Create a Wav2Vec2 model compatible with ONNX export"""
|
259 |
+
from transformers import Wav2Vec2Config
|
260 |
+
|
261 |
+
# Load config and modify for ONNX compatibility
|
262 |
+
config = Wav2Vec2Config.from_pretrained(model_name)
|
263 |
+
|
264 |
+
# Disable features that may cause ONNX issues
|
265 |
+
if hasattr(config, 'use_flash_attention_2'):
|
266 |
+
config.use_flash_attention_2 = False
|
267 |
+
if hasattr(config, 'torch_dtype'):
|
268 |
+
config.torch_dtype = torch.float32
|
269 |
+
|
270 |
+
# Load model with modified config
|
271 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name, config=config, torch_dtype=torch.float32)
|
272 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
273 |
+
|
274 |
+
return model, processor
|
275 |
+
|
276 |
+
def export_with_fallback(model, processor, onnx_path: str, input_length: int = 160000):
|
277 |
+
"""Export model with fallback options for different opset versions"""
|
278 |
+
|
279 |
+
dummy_input = torch.randn(1, input_length, dtype=torch.float32)
|
280 |
+
input_names = ["input_values"]
|
281 |
+
output_names = ["logits"]
|
282 |
+
|
283 |
+
dynamic_axes = {
|
284 |
+
"input_values": {0: "batch_size", 1: "sequence_length"},
|
285 |
+
"logits": {0: "batch_size", 1: "sequence_length"}
|
286 |
+
}
|
287 |
+
|
288 |
+
# Try different opset versions
|
289 |
+
opset_versions = [14, 13, 12, 11]
|
290 |
+
|
291 |
+
for opset_version in opset_versions:
|
292 |
+
try:
|
293 |
+
print(f"Trying ONNX export with opset version {opset_version}...")
|
294 |
+
|
295 |
+
with torch.no_grad():
|
296 |
+
model.eval()
|
297 |
+
|
298 |
+
# Disable all dropouts
|
299 |
+
for module in model.modules():
|
300 |
+
if isinstance(module, torch.nn.Dropout):
|
301 |
+
module.p = 0.0
|
302 |
+
|
303 |
+
torch.onnx.export(
|
304 |
+
model,
|
305 |
+
dummy_input,
|
306 |
+
onnx_path,
|
307 |
+
input_names=input_names,
|
308 |
+
output_names=output_names,
|
309 |
+
dynamic_axes=dynamic_axes,
|
310 |
+
opset_version=opset_version,
|
311 |
+
do_constant_folding=True,
|
312 |
+
verbose=False,
|
313 |
+
export_params=True,
|
314 |
+
training=torch.onnx.TrainingMode.EVAL
|
315 |
+
)
|
316 |
+
|
317 |
+
print(f"✓ Successfully exported with opset version {opset_version}")
|
318 |
+
return onnx_path
|
319 |
+
|
320 |
+
except Exception as e:
|
321 |
+
print(f"✗ Failed with opset {opset_version}: {str(e)[:100]}...")
|
322 |
+
continue
|
323 |
+
|
324 |
+
raise Exception("Failed to export with all attempted opset versions")
|
325 |
+
def optimize_onnx_model(onnx_path: str, optimized_path: str = None):
|
326 |
+
"""Optimize ONNX model for inference"""
|
327 |
+
try:
|
328 |
+
from onnxruntime.tools import optimizer
|
329 |
+
|
330 |
+
if optimized_path is None:
|
331 |
+
optimized_path = onnx_path.replace(".onnx", "_optimized.onnx")
|
332 |
+
|
333 |
+
# Optimize model
|
334 |
+
opt_model = optimizer.optimize_model(
|
335 |
+
onnx_path,
|
336 |
+
model_type="bert", # Similar architecture
|
337 |
+
num_heads=12,
|
338 |
+
hidden_size=768
|
339 |
+
)
|
340 |
+
|
341 |
+
opt_model.save_model_to_file(optimized_path)
|
342 |
+
print(f"Optimized model saved to: {optimized_path}")
|
343 |
+
|
344 |
+
return optimized_path
|
345 |
+
|
346 |
+
except ImportError:
|
347 |
+
print("ONNX Runtime tools not available for optimization")
|
348 |
+
return onnx_path
|
349 |
+
except Exception as e:
|
350 |
+
print(f"Optimization error: {e}")
|
351 |
+
return onnx_path
|
352 |
+
|
353 |
+
def compare_models(original_converter, onnx_inference, test_audio_path: str):
|
354 |
+
"""Compare PyTorch and ONNX model outputs"""
|
355 |
+
print("Comparing PyTorch vs ONNX outputs...")
|
356 |
+
|
357 |
+
# PyTorch inference
|
358 |
+
torch_result = original_converter.transcribe_to_characters(test_audio_path)
|
359 |
+
|
360 |
+
# ONNX inference
|
361 |
+
onnx_result = onnx_inference.transcribe(test_audio_path)
|
362 |
+
|
363 |
+
print(f"PyTorch transcription: {torch_result['character_transcript']}")
|
364 |
+
print(f"ONNX transcription: {onnx_result['transcription']}")
|
365 |
+
|
366 |
+
# Compare similarity
|
367 |
+
if torch_result['character_transcript'] == onnx_result['transcription']:
|
368 |
+
print("✓ Transcriptions match exactly!")
|
369 |
+
else:
|
370 |
+
print("⚠ Transcriptions differ")
|
371 |
+
|
372 |
+
if __name__ == "__main__":
|
373 |
+
main()
|
src/utils/helper.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def convert_numpy_types(obj):
|
5 |
+
"""Convert numpy types to Python native types"""
|
6 |
+
if isinstance(obj, np.integer):
|
7 |
+
return int(obj)
|
8 |
+
elif isinstance(obj, np.floating):
|
9 |
+
return float(obj)
|
10 |
+
elif isinstance(obj, np.ndarray):
|
11 |
+
return obj.tolist()
|
12 |
+
elif isinstance(obj, dict):
|
13 |
+
return {key: convert_numpy_types(value) for key, value in obj.items()}
|
14 |
+
elif isinstance(obj, list):
|
15 |
+
return [convert_numpy_types(item) for item in obj]
|
16 |
+
else:
|
17 |
+
return obj
|