Spaces:
Running
on
Zero
Running
on
Zero
more CUDA initialization fixes via perplexity
Browse files
app.py
CHANGED
@@ -1,18 +1,20 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
-
import src.depth_pro as depth_pro
|
4 |
import numpy as np
|
5 |
import matplotlib.pyplot as plt
|
6 |
import subprocess
|
7 |
-
import spaces
|
8 |
-
import torch
|
9 |
import tempfile
|
10 |
import os
|
11 |
import trimesh
|
12 |
import time
|
|
|
|
|
|
|
|
|
|
|
13 |
import timm
|
14 |
import cv2
|
15 |
-
from datetime import datetime
|
16 |
|
17 |
print(f"Timm version: {timm.__version__}")
|
18 |
|
@@ -20,7 +22,7 @@ subprocess.run(["bash", "get_pretrained_models.sh"])
|
|
20 |
|
21 |
@spaces.GPU(duration=20)
|
22 |
def load_model_and_predict(image_path):
|
23 |
-
device = torch.device("cuda
|
24 |
model, transform = depth_pro.create_model_and_transforms()
|
25 |
model = model.to(device)
|
26 |
model.eval()
|
@@ -68,6 +70,7 @@ def resize_image(image_path, max_size=1024):
|
|
68 |
img.save(temp_file, format="PNG")
|
69 |
return temp_file.name
|
70 |
|
|
|
71 |
def generate_3d_model(depth, image_path, focallength_px, simplification_factor=0.8, smoothing_iterations=1, thin_threshold=0.01):
|
72 |
"""
|
73 |
Generate a textured 3D mesh from the depth map and the original image.
|
@@ -178,6 +181,7 @@ def remove_thin_features(mesh, thickness_threshold=0.01):
|
|
178 |
|
179 |
return mesh
|
180 |
|
|
|
181 |
def regenerate_3d_model(depth_csv, image_path, focallength_px, simplification_factor, smoothing_iterations, thin_threshold):
|
182 |
# Load depth from CSV
|
183 |
depth = np.loadtxt(depth_csv, delimiter=',')
|
@@ -190,6 +194,7 @@ def regenerate_3d_model(depth_csv, image_path, focallength_px, simplification_fa
|
|
190 |
|
191 |
return view_model_path, download_model_path
|
192 |
|
|
|
193 |
def predict_depth(input_image):
|
194 |
temp_file = None
|
195 |
try:
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
|
|
4 |
import numpy as np
|
5 |
import matplotlib.pyplot as plt
|
6 |
import subprocess
|
|
|
|
|
7 |
import tempfile
|
8 |
import os
|
9 |
import trimesh
|
10 |
import time
|
11 |
+
from datetime import datetime
|
12 |
+
|
13 |
+
# Import potentially CUDA-initializing modules after 'spaces'
|
14 |
+
import torch
|
15 |
+
import src.depth_pro as depth_pro
|
16 |
import timm
|
17 |
import cv2
|
|
|
18 |
|
19 |
print(f"Timm version: {timm.__version__}")
|
20 |
|
|
|
22 |
|
23 |
@spaces.GPU(duration=20)
|
24 |
def load_model_and_predict(image_path):
|
25 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
model, transform = depth_pro.create_model_and_transforms()
|
27 |
model = model.to(device)
|
28 |
model.eval()
|
|
|
70 |
img.save(temp_file, format="PNG")
|
71 |
return temp_file.name
|
72 |
|
73 |
+
@spaces.GPU(duration=20)
|
74 |
def generate_3d_model(depth, image_path, focallength_px, simplification_factor=0.8, smoothing_iterations=1, thin_threshold=0.01):
|
75 |
"""
|
76 |
Generate a textured 3D mesh from the depth map and the original image.
|
|
|
181 |
|
182 |
return mesh
|
183 |
|
184 |
+
@spaces.GPU(duration=20)
|
185 |
def regenerate_3d_model(depth_csv, image_path, focallength_px, simplification_factor, smoothing_iterations, thin_threshold):
|
186 |
# Load depth from CSV
|
187 |
depth = np.loadtxt(depth_csv, delimiter=',')
|
|
|
194 |
|
195 |
return view_model_path, download_model_path
|
196 |
|
197 |
+
@spaces.GPU(duration=20)
|
198 |
def predict_depth(input_image):
|
199 |
temp_file = None
|
200 |
try:
|