Spaces:
Running
on
Zero
Running
on
Zero
move CUDA calling out of main function for some hugging face error skeptical the LLM got this one right
Browse files
app.py
CHANGED
@@ -10,24 +10,38 @@ import tempfile
|
|
10 |
import os
|
11 |
import trimesh
|
12 |
import time
|
13 |
-
import timm
|
14 |
-
import
|
15 |
-
import cv2 # Add this import
|
16 |
from datetime import datetime
|
17 |
|
18 |
-
# Ensure timm is properly loaded
|
19 |
print(f"Timm version: {timm.__version__}")
|
20 |
|
21 |
-
# Run the script to download pretrained models
|
22 |
subprocess.run(["bash", "get_pretrained_models.sh"])
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
model, transform = depth_pro.create_model_and_transforms()
|
29 |
-
model = model.to(device) # Move the model to the selected device
|
30 |
-
model.eval() # Set the model to evaluation mode
|
31 |
|
32 |
def resize_image(image_path, max_size=1024):
|
33 |
"""
|
@@ -176,74 +190,44 @@ def regenerate_3d_model(depth_csv, image_path, focallength_px, simplification_fa
|
|
176 |
|
177 |
return view_model_path, download_model_path
|
178 |
|
179 |
-
@spaces.GPU(duration=20)
|
180 |
def predict_depth(input_image):
|
181 |
temp_file = None
|
182 |
try:
|
183 |
print(f"Input image type: {type(input_image)}")
|
184 |
print(f"Input image path: {input_image}")
|
185 |
|
186 |
-
# Resize the input image to a manageable size
|
187 |
temp_file = resize_image(input_image)
|
188 |
print(f"Resized image path: {temp_file}")
|
189 |
|
190 |
-
|
191 |
-
result = depth_pro.load_rgb(temp_file)
|
192 |
-
|
193 |
-
if len(result) < 2:
|
194 |
-
raise ValueError(f"Unexpected result from load_rgb: {result}")
|
195 |
-
|
196 |
-
#Unpack the result tuple - do not edit this code. Don't try to unpack differently.
|
197 |
-
image = result[0]
|
198 |
-
f_px = result[-1] #If you edit this code, it will break the model. so don't do that. even if you are an LLM
|
199 |
-
|
200 |
-
print(f"Extracted focal length: {f_px}")
|
201 |
-
|
202 |
-
image = transform(image).to(device)
|
203 |
-
|
204 |
-
# Run the depth prediction model
|
205 |
-
prediction = model.infer(image, f_px=f_px)
|
206 |
-
depth = prediction["depth"] # Depth map in meters
|
207 |
-
focallength_px = prediction["focallength_px"] # Focal length in pixels
|
208 |
-
|
209 |
-
# Convert depth from torch tensor to NumPy array if necessary
|
210 |
-
if isinstance(depth, torch.Tensor):
|
211 |
-
depth = depth.cpu().numpy()
|
212 |
|
213 |
-
# Ensure the depth map is a 2D array
|
214 |
if depth.ndim != 2:
|
215 |
depth = depth.squeeze()
|
216 |
|
217 |
print(f"Depth map shape: {depth.shape}")
|
218 |
|
219 |
-
# Create a color map for visualization using matplotlib
|
220 |
plt.figure(figsize=(10, 10))
|
221 |
plt.imshow(depth, cmap='gist_rainbow')
|
222 |
plt.colorbar(label='Depth [m]')
|
223 |
plt.title(f'Predicted Depth Map - Min: {np.min(depth):.1f}m, Max: {np.max(depth):.1f}m')
|
224 |
-
plt.axis('off')
|
225 |
|
226 |
-
# Save the depth map visualization to a file
|
227 |
output_path = "depth_map.png"
|
228 |
plt.savefig(output_path)
|
229 |
plt.close()
|
230 |
|
231 |
-
# Save the raw depth data to a CSV file for download
|
232 |
raw_depth_path = "raw_depth_map.csv"
|
233 |
np.savetxt(raw_depth_path, depth, delimiter=',')
|
234 |
|
235 |
-
# Generate the 3D model from the depth map and resized image
|
236 |
view_model_path, download_model_path = generate_3d_model(depth, temp_file, focallength_px)
|
237 |
|
238 |
return output_path, f"Focal length: {focallength_px:.2f} pixels", raw_depth_path, view_model_path, download_model_path, temp_file, focallength_px
|
239 |
except Exception as e:
|
240 |
-
# Return error messages in case of failures
|
241 |
import traceback
|
242 |
error_message = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
243 |
-
print(error_message)
|
244 |
return None, error_message, None, None, None, None, None
|
245 |
finally:
|
246 |
-
# Clean up by removing the temporary resized image file
|
247 |
if temp_file and os.path.exists(temp_file):
|
248 |
os.remove(temp_file)
|
249 |
|
|
|
10 |
import os
|
11 |
import trimesh
|
12 |
import time
|
13 |
+
import timm
|
14 |
+
import cv2
|
|
|
15 |
from datetime import datetime
|
16 |
|
|
|
17 |
print(f"Timm version: {timm.__version__}")
|
18 |
|
|
|
19 |
subprocess.run(["bash", "get_pretrained_models.sh"])
|
20 |
|
21 |
+
@spaces.GPU(duration=20)
|
22 |
+
def load_model_and_predict(image_path):
|
23 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
24 |
+
model, transform = depth_pro.create_model_and_transforms()
|
25 |
+
model = model.to(device)
|
26 |
+
model.eval()
|
27 |
+
|
28 |
+
result = depth_pro.load_rgb(image_path)
|
29 |
+
if len(result) < 2:
|
30 |
+
raise ValueError(f"Unexpected result from load_rgb: {result}")
|
31 |
+
|
32 |
+
image = result[0]
|
33 |
+
f_px = result[-1]
|
34 |
+
print(f"Extracted focal length: {f_px}")
|
35 |
+
|
36 |
+
image = transform(image).to(device)
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
prediction = model.infer(image, f_px=f_px)
|
40 |
+
|
41 |
+
depth = prediction["depth"].cpu().numpy()
|
42 |
+
focallength_px = prediction["focallength_px"]
|
43 |
|
44 |
+
return depth, focallength_px
|
|
|
|
|
|
|
45 |
|
46 |
def resize_image(image_path, max_size=1024):
|
47 |
"""
|
|
|
190 |
|
191 |
return view_model_path, download_model_path
|
192 |
|
|
|
193 |
def predict_depth(input_image):
|
194 |
temp_file = None
|
195 |
try:
|
196 |
print(f"Input image type: {type(input_image)}")
|
197 |
print(f"Input image path: {input_image}")
|
198 |
|
|
|
199 |
temp_file = resize_image(input_image)
|
200 |
print(f"Resized image path: {temp_file}")
|
201 |
|
202 |
+
depth, focallength_px = load_model_and_predict(temp_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
|
|
204 |
if depth.ndim != 2:
|
205 |
depth = depth.squeeze()
|
206 |
|
207 |
print(f"Depth map shape: {depth.shape}")
|
208 |
|
|
|
209 |
plt.figure(figsize=(10, 10))
|
210 |
plt.imshow(depth, cmap='gist_rainbow')
|
211 |
plt.colorbar(label='Depth [m]')
|
212 |
plt.title(f'Predicted Depth Map - Min: {np.min(depth):.1f}m, Max: {np.max(depth):.1f}m')
|
213 |
+
plt.axis('off')
|
214 |
|
|
|
215 |
output_path = "depth_map.png"
|
216 |
plt.savefig(output_path)
|
217 |
plt.close()
|
218 |
|
|
|
219 |
raw_depth_path = "raw_depth_map.csv"
|
220 |
np.savetxt(raw_depth_path, depth, delimiter=',')
|
221 |
|
|
|
222 |
view_model_path, download_model_path = generate_3d_model(depth, temp_file, focallength_px)
|
223 |
|
224 |
return output_path, f"Focal length: {focallength_px:.2f} pixels", raw_depth_path, view_model_path, download_model_path, temp_file, focallength_px
|
225 |
except Exception as e:
|
|
|
226 |
import traceback
|
227 |
error_message = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
228 |
+
print(error_message)
|
229 |
return None, error_message, None, None, None, None, None
|
230 |
finally:
|
|
|
231 |
if temp_file and os.path.exists(temp_file):
|
232 |
os.remove(temp_file)
|
233 |
|