Spaces:
Running
Running
import torch | |
import torchvision.transforms.functional as TF | |
import torch.nn.functional as F | |
from PIL import Image | |
import os | |
from skimage import img_as_ubyte | |
from tqdm import tqdm | |
from natsort import natsorted | |
from glob import glob | |
from utils.image_utils import save_img | |
from utils.model_utils import load_checkpoint | |
import argparse | |
from model_arch.SRMNet_SWFF import SRMNet_SWFF | |
from model_arch.SRMNet import SRMNet | |
tasks = ['Deblurring_motionblur', | |
'Dehaze_realworld', | |
'Denoise_gaussian', | |
'Denoise_realworld', | |
'Deraining_raindrop', | |
'Deraining_rainstreak', | |
'LLEnhancement', | |
'Retouching'] | |
def main(): | |
parser = argparse.ArgumentParser(description='Quick demo Image Restoration') | |
parser.add_argument('--input_dir', default='test/', type=str, help='Input images root') | |
parser.add_argument('--result_dir', default='result/', type=str, help='Results images root') | |
parser.add_argument('--weights_root', default='pretrained_model', type=str, help='Weights root') | |
parser.add_argument('--task', default='Retouching', type=str, help='Restoration task (Above task list)') | |
args = parser.parse_args() | |
# Prepare testing data | |
inp_dir = os.path.join(args.input_dir, args.task) | |
files = natsorted(glob.glob(os.path.join(inp_dir, '*'))) | |
if len(files) == 0: | |
raise Exception("\nNo images in {} \nPlease enter the following tasks: \n\n{}".format(inp_dir, '\n'.join(tasks))) | |
out_dir = os.path.join(args.result_dir, args.task) | |
os.makedirs(out_dir, exist_ok=True) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Build model | |
model = define_model(args) | |
model.eval() | |
model = model.to(device) | |
print('restoring images......') | |
mul = 16 | |
for i, file_ in enumerate(tqdm(files)): | |
img = Image.open(file_).convert('RGB') | |
input_ = TF.to_tensor(img).unsqueeze(0).cuda() | |
# Pad the input if not_multiple_of 8 | |
h, w = input_.shape[2], input_.shape[3] | |
H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul | |
padh = H - h if h % mul != 0 else 0 | |
padw = W - w if w % mul != 0 else 0 | |
input_ = F.pad(input_, (0, padw, 0, padh), 'reflect') | |
with torch.no_grad(): | |
restored = model(input_) | |
restored = torch.clamp(restored, 0, 1) | |
restored = restored[:, :, :h, :w] | |
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy() | |
restored = img_as_ubyte(restored[0]) | |
f = os.path.splitext(os.path.split(file_)[-1])[0] | |
save_img((os.path.join(out_dir, f + '.png')), restored) | |
print(f"Files saved at {out_dir}") | |
print('finish !') | |
def define_model(args): | |
# Enhance models | |
if args.task in ['LLEnhancement', 'Retouching']: | |
model = SRMNet(in_chn=3, wf=96, depth=4) | |
weight_path = os.path.join(args.weights_root, args.task + '.pth') | |
load_checkpoint(model, weight_path) | |
# Restored models | |
else: | |
model = SRMNet_SWFF(in_chn=3, wf=96, depth=4) | |
weight_path = os.path.join(args.weights_root, args.task + '.pth') | |
load_checkpoint(model, weight_path) | |
return model | |
if __name__ == '__main__': | |
main() | |