Spaces:
Running
Running
Create main_test_SRMNet.py
Browse files- main_test_SRMNet.py +94 -0
main_test_SRMNet.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision.transforms.functional as TF
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from PIL import Image
|
5 |
+
import os
|
6 |
+
from skimage import img_as_ubyte
|
7 |
+
from tqdm import tqdm
|
8 |
+
from natsort import natsorted
|
9 |
+
from glob import glob
|
10 |
+
from utils.image_utils import save_img
|
11 |
+
from utils.model_utils import load_checkpoint
|
12 |
+
import argparse
|
13 |
+
from model_arch.SRMNet_SWFF import SRMNet_SWFF
|
14 |
+
from model_arch.SRMNet import SRMNet
|
15 |
+
|
16 |
+
tasks = ['Deblurring_motionblur',
|
17 |
+
'Dehaze_realworld',
|
18 |
+
'Denoise_gaussian',
|
19 |
+
'Denoise_realworld',
|
20 |
+
'Deraining_raindrop',
|
21 |
+
'Deraining_rainstreak',
|
22 |
+
'LLEnhancement',
|
23 |
+
'Retouching']
|
24 |
+
|
25 |
+
def main():
|
26 |
+
parser = argparse.ArgumentParser(description='Quick demo Image Restoration')
|
27 |
+
parser.add_argument('--input_dir', default='test/', type=str, help='Input images root')
|
28 |
+
parser.add_argument('--result_dir', default='result/', type=str, help='Results images root')
|
29 |
+
parser.add_argument('--weights_root', default='pretrained_model', type=str, help='Weights root')
|
30 |
+
parser.add_argument('--task', default='Retouching', type=str, help='Restoration task (Above task list)')
|
31 |
+
|
32 |
+
args = parser.parse_args()
|
33 |
+
|
34 |
+
# Prepare testing data
|
35 |
+
inp_dir = os.path.join(args.input_dir, args.task)
|
36 |
+
files = natsorted(glob.glob(os.path.join(inp_dir, '*')))
|
37 |
+
if len(files) == 0:
|
38 |
+
raise Exception("\nNo images in {} \nPlease enter the following tasks: \n\n{}".format(inp_dir, '\n'.join(tasks)))
|
39 |
+
|
40 |
+
out_dir = os.path.join(args.result_dir, args.task)
|
41 |
+
os.makedirs(out_dir, exist_ok=True)
|
42 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
43 |
+
# Build model
|
44 |
+
model = define_model(args)
|
45 |
+
model.eval()
|
46 |
+
model = model.to(device)
|
47 |
+
|
48 |
+
print('restoring images......')
|
49 |
+
|
50 |
+
mul = 16
|
51 |
+
|
52 |
+
for i, file_ in enumerate(tqdm(files)):
|
53 |
+
img = Image.open(file_).convert('RGB')
|
54 |
+
input_ = TF.to_tensor(img).unsqueeze(0).cuda()
|
55 |
+
|
56 |
+
# Pad the input if not_multiple_of 8
|
57 |
+
h, w = input_.shape[2], input_.shape[3]
|
58 |
+
H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul
|
59 |
+
padh = H - h if h % mul != 0 else 0
|
60 |
+
padw = W - w if w % mul != 0 else 0
|
61 |
+
input_ = F.pad(input_, (0, padw, 0, padh), 'reflect')
|
62 |
+
with torch.no_grad():
|
63 |
+
restored = model(input_)
|
64 |
+
|
65 |
+
restored = torch.clamp(restored, 0, 1)
|
66 |
+
restored = restored[:, :, :h, :w]
|
67 |
+
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
|
68 |
+
restored = img_as_ubyte(restored[0])
|
69 |
+
|
70 |
+
f = os.path.splitext(os.path.split(file_)[-1])[0]
|
71 |
+
save_img((os.path.join(out_dir, f + '.png')), restored)
|
72 |
+
|
73 |
+
print(f"Files saved at {out_dir}")
|
74 |
+
print('finish !')
|
75 |
+
|
76 |
+
|
77 |
+
def define_model(args):
|
78 |
+
# Enhance models
|
79 |
+
if args.task in ['LLEnhancement', 'Retouching']:
|
80 |
+
model = SRMNet(in_chn=3, wf=96, depth=4)
|
81 |
+
weight_path = os.path.join(args.weights_root, args.task + '.pth')
|
82 |
+
load_checkpoint(model, weight_path)
|
83 |
+
|
84 |
+
# Restored models
|
85 |
+
else:
|
86 |
+
model = SRMNet_SWFF(in_chn=3, wf=96, depth=4)
|
87 |
+
weight_path = os.path.join(args.weights_root, args.task + '.pth')
|
88 |
+
load_checkpoint(model, weight_path)
|
89 |
+
|
90 |
+
return model
|
91 |
+
|
92 |
+
|
93 |
+
if __name__ == '__main__':
|
94 |
+
main()
|