atwang's picture
[NOT TESTED] initial implementation of app
01664b3
raw
history blame
No virus
24.8 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py
"""
MaskFormer criterion.
"""
import logging
import torch
import torch.nn.functional as F
from torch import nn
from detectron2.utils.comm import get_world_size
from detectron2.projects.point_rend.point_features import (
get_uncertain_point_coords_with_randomness,
point_sample,
)
from ..utils.misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list, _max_by_axis
from ..utils.tranform import matrix_to_quaternion, quaternion_to_matrix
def dice_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(-1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_masks
dice_loss_jit = torch.jit.script(
dice_loss
) # type: torch.jit.ScriptModule
def sigmoid_ce_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
Loss tensor
"""
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
return loss.mean(1).sum() / num_masks
sigmoid_ce_loss_jit = torch.jit.script(
sigmoid_ce_loss
) # type: torch.jit.ScriptModule
def calculate_uncertainty(logits):
"""
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
foreground class in `classes`.
Args:
logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or
class-agnostic, where R is the total number of predicted masks in all images and C is
the number of foreground classes. The values are logits.
Returns:
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
the most uncertain locations having the highest uncertainty score.
"""
assert logits.shape[1] == 1
gt_class_logits = logits.clone()
return -(torch.abs(gt_class_logits))
def convert_to_filled_tensor(tensor_list):
max_size = _max_by_axis([list(tensor.shape) for tensor in tensor_list])
batch_shape = [len(tensor_list)] + max_size
dtype = tensor_list[0].dtype
device = tensor_list[0].device
filled_tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
for old, new in zip(tensor_list, filled_tensor):
new[:old.shape[0]] = old
return filled_tensor
def smooth_l1_loss(
input: torch.Tensor, target: torch.Tensor, beta: float, reduction: str = "none"
) -> torch.Tensor:
"""
Smooth L1 loss defined in the Fast R-CNN paper as:
::
| 0.5 * x ** 2 / beta if abs(x) < beta
smoothl1(x) = |
| abs(x) - 0.5 * beta otherwise,
where x = input - target.
Smooth L1 loss is related to Huber loss, which is defined as:
::
| 0.5 * x ** 2 if abs(x) < beta
huber(x) = |
| beta * (abs(x) - 0.5 * beta) otherwise
Smooth L1 loss is equal to huber(x) / beta. This leads to the following
differences:
- As beta -> 0, Smooth L1 loss converges to L1 loss, while Huber loss
converges to a constant 0 loss.
- As beta -> +inf, Smooth L1 converges to a constant 0 loss, while Huber loss
converges to L2 loss.
- For Smooth L1 loss, as beta varies, the L1 segment of the loss has a constant
slope of 1. For Huber loss, the slope of the L1 segment is beta.
Smooth L1 loss can be seen as exactly L1 loss, but with the abs(x) < beta
portion replaced with a quadratic function such that at abs(x) = beta, its
slope is 1. The quadratic segment smooths the L1 loss near x = 0.
Args:
input (Tensor): input tensor of any shape
target (Tensor): target value tensor with the same shape as input
beta (float): L1 to L2 change point.
For beta values < 1e-5, L1 loss is computed.
reduction: 'none' | 'mean' | 'sum'
'none': No reduction will be applied to the output.
'mean': The output will be averaged.
'sum': The output will be summed.
Returns:
The loss with the reduction option applied.
Note:
PyTorch's builtin "Smooth L1 loss" implementation does not actually
implement Smooth L1 loss, nor does it implement Huber loss. It implements
the special case of both in which they are equal (beta=1).
See: https://pytorch.org/docs/stable/nn.html#torch.nn.SmoothL1Loss.
"""
if beta < 1e-5:
# if beta == 0, then torch.where will result in nan gradients when
# the chain rule is applied due to pytorch implementation details
# (the False branch "0.5 * n ** 2 / 0" has an incoming gradient of
# zeros, rather than "no gradient"). To avoid this issue, we define
# small values of beta to be exactly l1 loss.
loss = torch.abs(input - target)
else:
n = torch.abs(input - target)
cond = n < beta
loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta)
if reduction == "mean":
loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum()
elif reduction == "sum":
loss = loss.sum()
return loss
class SetCriterion(nn.Module):
"""This class computes the loss for DETR.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses,
num_points, oversample_ratio, importance_sample_ratio, motionnet_type, only_DET):
"""Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.eos_coef = eos_coef
self.losses = losses
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
# pointwise mask loss parameters
self.num_points = num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
# OPD
self.motionnet_type = motionnet_type
self.only_DET = only_DET
def loss_labels(self, outputs, targets, indices, num_masks):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert "pred_logits" in outputs
src_logits = outputs["pred_logits"].float()
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
target_classes[idx] = target_classes_o
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {"loss_ce": loss_ce}
return losses
# OPD
def loss_mtypes(self, outputs, targets, indices, num_masks):
assert "pred_mtypes" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_mtypes = outputs["pred_mtypes"][src_idx][target_motion_valid]
target_mtypes = convert_to_filled_tensor([t["gt_types"] for t in targets])[tgt_idx][target_motion_valid]
if src_mtypes.shape[0] == 0:
return {"loss_mtype": 0.0 * src_mtypes.sum()}
loss_mtype = F.cross_entropy(src_mtypes, target_mtypes.long(), reduction="sum") / num_masks
losses = {"loss_mtype": loss_mtype}
return losses
def loss_morigins(self, outputs, targets, indices, num_masks):
assert "pred_morigins" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
# Only calculate origin loss for the rotation axis
target_mtypes = convert_to_filled_tensor([t["gt_types"] for t in targets])[tgt_idx][target_motion_valid]
rot_inds = (
(target_mtypes == 0).nonzero().unbind(1)[0]
)
src_morigins = outputs["pred_morigins"][src_idx][target_motion_valid][rot_inds]
target_morigins = convert_to_filled_tensor([t["gt_origins"] for t in targets])[tgt_idx][target_motion_valid][rot_inds]
if src_morigins.shape[0] == 0:
return {"loss_morigin": 0.0 * src_morigins.sum()}
loss_morigin = smooth_l1_loss(src_morigins, target_morigins, 1.0, reduction="sum") / num_masks
losses = {"loss_morigin": loss_morigin}
return losses
def loss_maxises(self, outputs, targets, indices, num_masks):
assert "pred_maxises" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_maxises = outputs["pred_maxises"][src_idx][target_motion_valid]
target_maxises = convert_to_filled_tensor([t["gt_axises"] for t in targets])[tgt_idx][target_motion_valid]
if src_maxises.shape[0] == 0:
return {"loss_maxis": 0.0 * src_maxises.sum()}
loss_maxis = smooth_l1_loss(src_maxises, target_maxises, 1.0, reduction="sum") / num_masks
losses = {"loss_maxis": loss_maxis}
return losses
#TODO: add loss for motion state
def loss_mstates(self, outputs, targets, indices, num_masks):
assert "pred_mstates" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_mstate = outputs["pred_mstates"][src_idx][target_motion_valid]
target_mstate = convert_to_filled_tensor([t["gt_states"] for t in targets])[tgt_idx][target_motion_valid]
if src_mstate.shape[0] == 0:
return {"loss_mstate": 0.0 * src_mstate.sum()}
loss_mstate = smooth_l1_loss(src_mstate, target_mstate, 1.0, reduction="sum") / num_masks
losses = {"loss_mstate": loss_mstate}
return losses
def loss_mstatemaxs(self, outputs, targets, indices, num_masks):
assert "pred_mstatemaxs" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_mstatemax = outputs["pred_mstatemaxs"][src_idx][target_motion_valid]
target_mstatemax = convert_to_filled_tensor([t["gt_statemaxs"] for t in targets])[tgt_idx][target_motion_valid]
if src_mstatemax.shape[0] == 0:
return {"loss_mstatemax": 0.0 * src_mstatemax.sum()}
loss_mstatemax = smooth_l1_loss(src_mstatemax, target_mstatemax, 1.0, reduction="sum") / num_masks
losses = {"loss_mstatemax": loss_mstatemax}
return losses
def loss_extrinsics(self, outputs, targets, indices, num_masks):
assert "pred_extrinsics" in outputs
if self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V6":
target_motion_valid = torch.tensor([t["gt_motion_valids"][0] for t in targets], device=outputs["pred_extrinsics"].device)
src_extrinsics = outputs["pred_extrinsics"][target_motion_valid]
target_extrinsics_full = [t["gt_extrinsic"][0] for t in targets]
target_extrinsics = convert_to_filled_tensor([torch.cat(
[
extrinsic[0:3],
extrinsic[4:7],
extrinsic[8:11],
extrinsic[12:15],
],
0,
) for extrinsic in target_extrinsics_full])[target_motion_valid]
if src_extrinsics.shape[0] == 0:
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
# Much proper to make sure each valid image gives the same contribution to the loss
# Therefore, here use the number of images to average
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / outputs["pred_extrinsics"].shape[0]
elif self.motionnet_type == "BMOC_V1":
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_extrinsics = outputs["pred_extrinsics"][src_idx][target_motion_valid]
target_extrinsics_full = []
for t in targets:
extrinsics = t["gt_extrinsic"]
target_extrinsics_full.append(torch.cat(
[
extrinsics[:, 0:3],
extrinsics[:, 4:7],
extrinsics[:, 8:11],
extrinsics[:, 12:15],
],
1,
))
target_extrinsics = convert_to_filled_tensor(target_extrinsics_full)[tgt_idx][target_motion_valid]
if src_extrinsics.shape[0] == 0:
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
# Much proper to make sure each valid image gives the same contribution to the loss
# Therefore, here use the number of images to average
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / num_masks
elif self.motionnet_type == "BMOC_V2":
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_extrinsics = outputs["pred_extrinsics"][src_idx][target_motion_valid]
target_extrinsics = convert_to_filled_tensor([t["gt_extrinsic_quaternion"] for t in targets])[tgt_idx][target_motion_valid]
if src_extrinsics.shape[0] == 0:
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
# Much proper to make sure each valid image gives the same contribution to the loss
# Therefore, here use the number of images to average
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / num_masks
elif self.motionnet_type == "BMOC_V3":
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
target_motion_valid = convert_to_filled_tensor([t["gt_motion_valids"] for t in targets])[tgt_idx]
src_extrinsics = outputs["pred_extrinsics"][src_idx][target_motion_valid]
target_extrinsics = convert_to_filled_tensor([t["gt_extrinsic_6d"] for t in targets])[tgt_idx][target_motion_valid]
if src_extrinsics.shape[0] == 0:
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
# Much proper to make sure each valid image gives the same contribution to the loss
# Therefore, here use the number of images to average
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / num_masks
elif self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5":
target_motion_valid = torch.tensor([t["gt_motion_valids"][0] for t in targets], device=outputs["pred_extrinsics"].device)
src_extrinsics = outputs["pred_extrinsics"][target_motion_valid]
target_extrinsics = convert_to_filled_tensor([t["gt_extrinsic_quaternion"][0] for t in targets])[target_motion_valid]
if src_extrinsics.shape[0] == 0:
return {"loss_extrinsic": 0.0 * src_extrinsics.sum()}
# Much proper to make sure each valid image gives the same contribution to the loss
# Therefore, here use the number of images to average
loss_extrinsic = smooth_l1_loss(src_extrinsics, target_extrinsics, 1.0, reduction="sum") / outputs["pred_extrinsics"].shape[0]
return {"loss_extrinsic": loss_extrinsic}
def loss_masks(self, outputs, targets, indices, num_masks):
"""Compute the losses related to the masks: the focal loss and the dice loss.
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
"""
assert "pred_masks" in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
src_masks = outputs["pred_masks"]
src_masks = src_masks[src_idx]
masks = [t["masks"] for t in targets]
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
target_masks = target_masks.to(src_masks)
target_masks = target_masks[tgt_idx]
# No need to upsample predictions as we are using normalized coordinates :)
# N x 1 x H x W
src_masks = src_masks[:, None]
target_masks = target_masks[:, None]
with torch.no_grad():
# sample point_coords
point_coords = get_uncertain_point_coords_with_randomness(
src_masks,
lambda logits: calculate_uncertainty(logits),
self.num_points,
self.oversample_ratio,
self.importance_sample_ratio,
)
# get gt labels
point_labels = point_sample(
target_masks,
point_coords,
align_corners=False,
).squeeze(1)
point_logits = point_sample(
src_masks,
point_coords,
align_corners=False,
).squeeze(1)
losses = {
"loss_mask": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks),
"loss_dice": dice_loss_jit(point_logits, point_labels, num_masks),
}
del src_masks
del target_masks
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, num_masks):
tmp_device = outputs["pred_logits"].device
tmp_list = ["mtypes", "morigins", "maxises"]
loss_map = {
'labels': self.loss_labels,
'masks': self.loss_masks,
# OPD
"mtypes": self.loss_mtypes,
"morigins": self.loss_morigins,
"maxises": self.loss_maxises,
"extrinsics": self.loss_extrinsics,
"mstates": self.loss_mstates,
"mstatemaxs": self.loss_mstatemaxs,
}
assert loss in loss_map, f"do you really want to compute {loss} loss?"
tmp_loss = loss_map[loss](outputs, targets, indices, num_masks)
if self.only_DET and loss in tmp_list:
tmp_key = list(tmp_loss.keys())[0]
tmp_loss[tmp_key] = torch.tensor(0.0, device=tmp_device)
return tmp_loss
else:
return tmp_loss
# return loss_map[loss](outputs, targets, indices, num_masks)
def forward(self, outputs, targets):
"""This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
tmp_device = outputs["pred_logits"].device
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_masks = sum(len(t["labels"]) for t in targets)
num_masks = torch.as_tensor(
[num_masks], dtype=torch.float, device=next(iter(outputs.values())).device
)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_masks)
num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
if loss == "extrinsics" and self.motionnet_type == "BMCC":
continue
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "aux_outputs" in outputs:
for i, aux_outputs in enumerate(outputs["aux_outputs"]):
indices = self.matcher(aux_outputs, targets)
for loss in self.losses:
if loss == "extrinsics" and (self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMCC"):
continue
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks)
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
def __repr__(self):
head = "Criterion " + self.__class__.__name__
body = [
"matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
"losses: {}".format(self.losses),
"weight_dict: {}".format(self.weight_dict),
"num_classes: {}".format(self.num_classes),
"eos_coef: {}".format(self.eos_coef),
"num_points: {}".format(self.num_points),
"oversample_ratio: {}".format(self.oversample_ratio),
"importance_sample_ratio: {}".format(self.importance_sample_ratio),
]
_repr_indent = 4
lines = [head] + [" " * _repr_indent + line for line in body]
return "\n".join(lines)