opdmulti-demo / mask2former /maskformer_model.py
atwang's picture
[NOT TESTED] initial implementation of app
01664b3
raw history blame
No virus
39.1 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import pdb
from typing import Tuple
from copy import deepcopy
import torch
from torch import device, nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
from detectron2.utils.memory import retry_if_cuda_oom
from .modeling.criterion import SetCriterion
from .modeling.matcher import HungarianMatcher
from .utils.tranform import matrix_to_quaternion, quaternion_to_matrix, rotation_6d_to_matrix, matrix_to_rotation_6d, geometric_median
from .modeling.criterion import convert_to_filled_tensor
import numpy as np
@META_ARCH_REGISTRY.register()
class MaskFormer(nn.Module):
"""
Main class for mask classification semantic segmentation architectures.
"""
@configurable
def __init__(
self,
*,
backbone: Backbone,
sem_seg_head: nn.Module,
criterion: nn.Module,
mask2former_backbone: nn.Module,
mask2former_sem_seg_head: nn.Module,
num_queries: int,
object_mask_threshold: float,
overlap_threshold: float,
metadata,
size_divisibility: int,
sem_seg_postprocess_before_inference: bool,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
# inference
semantic_on: bool,
panoptic_on: bool,
instance_on: bool,
test_topk_per_image: int,
# OPD
motionnet_type,
voting,
gtdet,
inference_matcher,
gtextrinsic,
only_DET,
obj_method
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
sem_seg_head: a module that predicts semantic segmentation from backbone features
criterion: a module that defines the loss
num_queries: int, number of queries
object_mask_threshold: float, threshold to filter query based on classification score
for panoptic segmentation inference
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
segmentation inference
size_divisibility: Some backbones require the input height and width to be divisible by a
specific integer. We can use this to override such requirement.
sem_seg_postprocess_before_inference: whether to resize the prediction back
to original input size before semantic segmentation inference or after.
For high-resolution dataset like Mapillary, resizing predictions before
inference will cause OOM error.
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
semantic_on: bool, whether to output semantic segmentation prediction
instance_on: bool, whether to output instance segmentation prediction
panoptic_on: bool, whether to output panoptic segmentation prediction
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
"""
super().__init__()
self.backbone = backbone
self.sem_seg_head = sem_seg_head
self.mask2former_backbone = mask2former_backbone
self.mask2former_sem_seg_head = mask2former_sem_seg_head
self.criterion = criterion
self.num_queries = num_queries
self.overlap_threshold = overlap_threshold
self.object_mask_threshold = object_mask_threshold
self.metadata = metadata
if size_divisibility < 0:
# use backbone size_divisibility if not set
size_divisibility = self.backbone.size_divisibility
self.size_divisibility = size_divisibility
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
self.register_buffer("pixel_mean", torch.Tensor(
pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(
pixel_std).view(-1, 1, 1), False)
# additional args
self.semantic_on = semantic_on
self.instance_on = instance_on
self.panoptic_on = panoptic_on
self.test_topk_per_image = test_topk_per_image
if not self.semantic_on:
assert self.sem_seg_postprocess_before_inference
# OPD
self.motionnet_type = motionnet_type
self.voting = voting
self.gtdet = gtdet
self.inference_matcher = inference_matcher
self.gtextrinsic = gtextrinsic
self.only_DET = only_DET
self.obj_method = obj_method
@classmethod
def from_config(cls, cfg):
backbone = build_backbone(cfg)
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
# TODO: add mask2former backbone and semseghead to get object mask
if cfg.OBJ_DETECT:
mask2former_backbone = build_backbone(cfg.MASK2FORMER)
mask2former_sem_seg_head = build_sem_seg_head(
cfg.MASK2FORMER, backbone.output_shape())
else:
mask2former_backbone = None
mask2former_sem_seg_head = None
# Loss parameters:
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
# loss weights
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
# OPD
mtype_weight = cfg.MODEL.MASK_FORMER.MTYPE_WEIGHT
morigin_weight = cfg.MODEL.MASK_FORMER.MORIGIN_WEIGHT
maxis_weight = cfg.MODEL.MASK_FORMER.MAXIS_WEIGHT
extrinsic_weight = cfg.MODEL.MASK_FORMER.EXTRINSIC_WEIGHT
mstate_weight = cfg.MODEL.MASK_FORMER.MSTATE_WEIGHT
mstatemax_weight = cfg.MODEL.MASK_FORMER.MSTATEMAX_WEIGHT
motionnet_type = cfg.MODEL.MOTIONNET.TYPE
# building criterion
matcher = HungarianMatcher(
cost_class=class_weight,
cost_mask=mask_weight,
cost_dice=dice_weight,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
)
if "GTDET" in cfg.MODEL:
gtdet = cfg.MODEL.GTDET
else:
gtdet = False
if "GTEXTRINSIC" in cfg.MODEL:
gtextrinsic = cfg.MODEL.GTEXTRINSIC
else:
gtextrinsic = None
if gtdet or gtextrinsic:
# This inference matcher is used for GT ablation when inferencing
inference_matcher = matcher
else:
inference_matcher = None
if "ONLY_DET" in cfg.MODEL:
only_DET = cfg.MODEL.ONLY_DET
else:
only_DET = False
# OPD
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight, "loss_mtype": mtype_weight,
"loss_morigin": morigin_weight, "loss_maxis": maxis_weight, "loss_mstate": mstate_weight, "loss_mstatemax": mstatemax_weight}
if motionnet_type == "BMOC_V1" or motionnet_type == "BMOC_V2" or motionnet_type == "BMOC_V3" or motionnet_type == "BMOC_V4" or motionnet_type == "BMOC_V5" or motionnet_type == "BMOC_V6":
weight_dict["loss_extrinsic"] = extrinsic_weight
if deep_supervision:
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
aux_weight_dict = {}
for i in range(dec_layers - 1):
aux_weight_dict.update(
{k + f"_{i}": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
# OPD
if motionnet_type == "BMOC_V0":
weight_dict["loss_extrinsic"] = extrinsic_weight
# OPD
losses = ["labels", "masks", "mtypes", "morigins",
"maxises", "extrinsics", "mstates", "mstatemaxs"]
criterion = SetCriterion(
sem_seg_head.num_classes,
matcher=matcher,
weight_dict=weight_dict,
eos_coef=no_object_weight,
losses=losses,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
motionnet_type=motionnet_type,
only_DET=only_DET,
)
# OPD
if "VOTING" in cfg.MODEL.MOTIONNET:
voting = cfg.MODEL.MOTIONNET.VOTING
else:
voting = None
return {
"backbone": backbone,
"sem_seg_head": sem_seg_head,
"mask2former_backbone": mask2former_backbone,
"mask2former_sem_seg_head": mask2former_sem_seg_head,
"criterion": criterion,
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
"sem_seg_postprocess_before_inference": (
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON
or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON
),
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
# inference
"semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON,
"instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON,
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON,
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
# OPD
"motionnet_type": motionnet_type,
"voting": voting,
"gtdet": gtdet,
"inference_matcher": inference_matcher,
"gtextrinsic": gtextrinsic,
"only_DET": only_DET,
"obj_method": cfg.OBJ_DETECT
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "instances": per-region ground truth
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model (may be different
from input resolution), used in inference.
Returns:
list[dict]:
each dict has the results for one image. The dict contains the following keys:
* "sem_seg":
A Tensor that represents the
per-pixel segmentation prediced by the head.
The prediction has shape KxHxW that represents the logits of
each class for each pixel.
* "panoptic_seg":
A tuple that represent panoptic output
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
Each dict contains keys "id", "category_id", "isthing".
"""
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
# Load the targets if it's training or it's in the groundtruth ablation study
if self.training or self.gtdet or self.gtextrinsic:
# get the grpundtruth
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(
self.device) for x in batched_inputs]
targets = self.prepare_targets(gt_instances, images)
else:
targets = None
if not self.obj_method:
features = self.backbone(images.tensor)
outputs = self.sem_seg_head(features)
else:
# TODO: add freezed model to extract object mask.
for para in self.mask2former_backbone.parameters():
para.requires_grad = False
for para in self.mask2former_sem_seg_head.parameters():
para.requires_grad = False
obj_feature = self.mask2former_backbone(images.tensor)
obj_output = self.mask2former_sem_seg_head(obj_feature)
pred_obj_masks = obj_output["pred_masks"]
# prob_masks = torch.sigmoid(pred_obj_masks)
pred_cls_results = obj_output["pred_logits"]
# TODO: use object prediction to help object pose prediction, find a way to calculate the IoU of part and object mask
for indice, pred_obj_mask in enumerate(pred_obj_masks):
# get binary mask
for idx, mask in enumerate(pred_obj_mask):
max_score = torch.max(mask)
pred_obj_mask[idx] = (mask > (max_score*0.5)).float()
# replace the pred masks with binary masks
pred_obj_masks[indice] = pred_obj_mask
# import pdb
# pdb.set_trace()
features = self.backbone(images.tensor)
outputs = self.sem_seg_head(features, pred_obj_masks)
# import pdb
# pdb.set_trace()
if self.training:
# bipartite matching-based loss
losses = self.criterion(outputs, targets)
for k in list(losses.keys()):
if k in self.criterion.weight_dict:
losses[k] *= self.criterion.weight_dict[k]
else:
# remove this loss if not specified in `weight_dict`
print(f"Warning: {k} is not in loss")
losses.pop(k)
return losses
else:
mask_cls_results = outputs["pred_logits"]
mask_pred_results = outputs["pred_masks"]
# OPD
mask_mtype_results = outputs["pred_mtypes"]
mask_morigin_results = outputs["pred_morigins"]
mask_maxis_results = outputs["pred_maxises"]
mask_mstate_results = outputs["pred_mstates"]
mask_mstatemax_results = outputs["pred_mstatemaxs"]
if "BMOC" in self.motionnet_type:
mask_extrinsic_results = outputs["pred_extrinsics"]
# upsample masks
mask_pred_results = F.interpolate(
mask_pred_results,
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)
if self.gtdet or self.gtextrinsic:
if self.gtdet:
# Make other predictions be bad, so that they will not consider when evaluating
mask_pred_results[:, :, :, :] = -30
mask_cls_results[:, :, :3] = 0
mask_cls_results[:, :, 3] = 15 # weight for softmax
# Initialize the predicted class and predicted mask to the default value
if targets[0]["masks"].shape[0] != 0:
outputs_without_aux = {
k: v for k, v in outputs.items() if k != "aux_outputs"}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.inference_matcher(
outputs_without_aux, targets)
def _get_src_permutation_idx(indices):
# permute predictions following indices
batch_idx = torch.cat(
[torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(indices):
# permute targets following indices
batch_idx = torch.cat(
[torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
src_idx = _get_src_permutation_idx(indices)
tgt_idx = _get_tgt_permutation_idx(indices)
if self.gtdet:
mask_pred_results[src_idx] = targets[0]["masks"].unsqueeze(0)[
tgt_idx].float() * 30
mask_pred_results[mask_pred_results == 0] = -30
mask_cls_results[src_idx] = F.one_hot(
targets[0]["labels"][tgt_idx[1]], num_classes=self.sem_seg_head.num_classes+1).float() * 15
if self.gtextrinsic:
if self.motionnet_type == "BMOC_V6":
gt_extrinsic_raw = targets[0]["gt_extrinsic"][0]
gt_extrinsic = torch.cat(
[
gt_extrinsic_raw[0:3],
gt_extrinsic_raw[4:7],
gt_extrinsic_raw[8:11],
gt_extrinsic_raw[12:15],
],
0,
)
mask_extrinsic_results[0] = gt_extrinsic
else:
raise ValueError("Not Implemented")
del outputs
if "BMOC" in self.motionnet_type:
processed_results = []
for mask_cls_result, mask_pred_result, input_per_image, image_size, mask_mtype_result, mask_morigin_result, mask_maxis_result, mask_mstate_result, mask_mstatemax_result, mask_extrinsic_result in zip(
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes, mask_mtype_results, mask_morigin_results, mask_maxis_results, mask_mstate_results, mask_mstatemax_results, mask_extrinsic_results
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
processed_results.append({})
if self.sem_seg_postprocess_before_inference:
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
mask_pred_result, image_size, height, width
)
mask_cls_result = mask_cls_result.to(mask_pred_result)
# OPD
mask_mtype_result = mask_mtype_result.to(
mask_pred_result)
mask_morigin_result = mask_morigin_result.to(
mask_pred_result)
mask_maxis_result = mask_maxis_result.to(
mask_pred_result)
mask_mstate_result = mask_mstate_result.to(
mask_pred_result)
mask_mstatemax_result = mask_mstatemax_result.to(
mask_pred_result)
mask_extrinsic_result = mask_extrinsic_result.to(
mask_pred_result)
# semantic segmentation inference
if self.semantic_on:
r = retry_if_cuda_oom(self.semantic_inference)(
mask_cls_result, mask_pred_result)
if not self.sem_seg_postprocess_before_inference:
r = retry_if_cuda_oom(sem_seg_postprocess)(
r, image_size, height, width)
processed_results[-1]["sem_seg"] = r
# panoptic segmentation inference
if self.panoptic_on:
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(
mask_cls_result, mask_pred_result)
processed_results[-1]["panoptic_seg"] = panoptic_r
# instance segmentation inference
if self.instance_on:
instance_r = retry_if_cuda_oom(self.instance_inference)(
mask_cls_result, mask_pred_result, mask_mtype_result, mask_morigin_result, mask_maxis_result, mask_mstate_result, mask_mstatemax_result, mask_extrinsic_result)
processed_results[-1]["instances"] = instance_r
else:
processed_results = []
for mask_cls_result, mask_pred_result, input_per_image, image_size, mask_mtype_result, mask_morigin_result, mask_maxis_result, mask_mstate_result, mask_mstatemax_result in zip(
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes, mask_mtype_results, mask_morigin_results, mask_maxis_results, mask_mstate_results, mask_mstatemax_results
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
processed_results.append({})
if self.sem_seg_postprocess_before_inference:
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
mask_pred_result, image_size, height, width
)
mask_cls_result = mask_cls_result.to(mask_pred_result)
# OPD
mask_mtype_result = mask_mtype_result.to(
mask_pred_result)
mask_morigin_result = mask_morigin_result.to(
mask_pred_result)
mask_maxis_result = mask_maxis_result.to(
mask_pred_result)
mask_mstate_result = mask_mstate_result.to(
mask_pred_result)
mask_mstatemax_result = mask_mstatemax_result.to(
mask_pred_result)
# semantic segmentation inference
if self.semantic_on:
r = retry_if_cuda_oom(self.semantic_inference)(
mask_cls_result, mask_pred_result)
if not self.sem_seg_postprocess_before_inference:
r = retry_if_cuda_oom(sem_seg_postprocess)(
r, image_size, height, width)
processed_results[-1]["sem_seg"] = r
# panoptic segmentation inference
if self.panoptic_on:
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(
mask_cls_result, mask_pred_result)
processed_results[-1]["panoptic_seg"] = panoptic_r
# instance segmentation inference
if self.instance_on:
instance_r = retry_if_cuda_oom(self.instance_inference)(
mask_cls_result, mask_pred_result, mask_mtype_result, mask_morigin_result, mask_maxis_result, mask_mstate_result, mask_mstatemax_result, None)
processed_results[-1]["instances"] = instance_r
return processed_results
def prepare_targets(self, targets, images):
h_pad, w_pad = images.tensor.shape[-2:]
new_targets = []
for targets_per_image in targets:
if hasattr(targets_per_image, "gt_masks"):
# pad gt
gt_masks = targets_per_image.gt_masks
padded_masks = torch.zeros(
(gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
padded_masks[:, : gt_masks.shape[1],
: gt_masks.shape[2]] = gt_masks
else:
padded_masks = torch.tensor([])
if "BMOC" in self.motionnet_type:
new_targets.append(
{
"labels": targets_per_image.gt_classes,
"masks": padded_masks,
# OPD
"gt_motion_valids": targets_per_image.gt_motion_valids,
"gt_types": targets_per_image.gt_types,
"gt_origins": targets_per_image.gt_origins,
"gt_axises": targets_per_image.gt_axises,
"gt_states": targets_per_image.gt_states,
"gt_statemaxs": targets_per_image.gt_statemaxs,
"gt_extrinsic": targets_per_image.gt_extrinsic,
"gt_extrinsic_quaternion": targets_per_image.gt_extrinsic_quaternion,
"gt_extrinsic_6d": targets_per_image.gt_extrinsic_6d,
}
)
else:
new_targets.append(
{
"labels": targets_per_image.gt_classes,
"masks": padded_masks,
# OPD
"gt_motion_valids": targets_per_image.gt_motion_valids,
"gt_types": targets_per_image.gt_types,
"gt_origins": targets_per_image.gt_origins,
"gt_axises": targets_per_image.gt_axises,
"gt_states": targets_per_image.gt_states,
"gt_statemaxs": targets_per_image.gt_statemaxs,
}
)
return new_targets
def semantic_inference(self, mask_cls, mask_pred):
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
mask_pred = mask_pred.sigmoid()
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
return semseg
def panoptic_inference(self, mask_cls, mask_pred):
scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
mask_pred = mask_pred.sigmoid()
keep = labels.ne(self.sem_seg_head.num_classes) & (
scores > self.object_mask_threshold)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_masks = mask_pred[keep]
cur_mask_cls = mask_cls[keep]
cur_mask_cls = cur_mask_cls[:, :-1]
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
h, w = cur_masks.shape[-2:]
panoptic_seg = torch.zeros(
(h, w), dtype=torch.int32, device=cur_masks.device)
segments_info = []
current_segment_id = 0
if cur_masks.shape[0] == 0:
# We didn't detect any mask :(
return panoptic_seg, segments_info
else:
# take argmax
cur_mask_ids = cur_prob_masks.argmax(0)
stuff_memory_list = {}
for k in range(cur_classes.shape[0]):
pred_class = cur_classes[k].item()
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values()
mask_area = (cur_mask_ids == k).sum().item()
original_area = (cur_masks[k] >= 0.5).sum().item()
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
if mask_area / original_area < self.overlap_threshold:
continue
# merge stuff regions
if not isthing:
if int(pred_class) in stuff_memory_list.keys():
panoptic_seg[mask] = stuff_memory_list[int(
pred_class)]
continue
else:
stuff_memory_list[int(
pred_class)] = current_segment_id + 1
current_segment_id += 1
panoptic_seg[mask] = current_segment_id
segments_info.append(
{
"id": current_segment_id,
"isthing": bool(isthing),
"category_id": int(pred_class),
}
)
return panoptic_seg, segments_info
# Voting algorithms for inference
def votingProcess(self, x, voting):
device = x.device
if voting == "median":
final = torch.median(x, axis=0)[0]
elif voting == "mean":
final = torch.mean(x, axis=0)
elif voting == "geo-median":
x = x.detach().cpu().numpy()
final = geometric_median(x)
final = torch.from_numpy(final).to(device)
return final
def convert_to_valid_extrinsic(self, mask_extrinsic, dim=0):
if dim == 0:
translation = mask_extrinsic[9:12]
rotation_mat = quaternion_to_matrix(matrix_to_quaternion(
torch.transpose(mask_extrinsic[:9].reshape(3, 3), 0, 1)))
rotation_vector = torch.flatten(rotation_mat.transpose(0, 1))
final_mask_extrinsic = torch.cat((rotation_vector, translation))
elif dim == 1:
translation = mask_extrinsic[:, 9:12]
rotation_mat = quaternion_to_matrix(matrix_to_quaternion(
torch.transpose(mask_extrinsic[:, :9].reshape(-1, 3, 3), 1, 2)))
rotation_vector = torch.flatten(
rotation_mat.transpose(1, 2), start_dim=1)
final_mask_extrinsic = torch.cat(
(rotation_vector, translation), dim=1)
return final_mask_extrinsic
def instance_inference(self, mask_cls, mask_pred, mask_mtype, mask_morigin, mask_maxis, mask_mstate, mask_mstatemax, mask_extrinsic):
# mask_pred is already processed to have the same shape as original input
image_size = mask_pred.shape[-2:]
# [Q, K]
scores = F.softmax(mask_cls, dim=-1)[:, :-1]
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(
0).repeat(self.num_queries, 1).flatten(0, 1)
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
scores_per_image, topk_indices = scores.flatten(
0, 1).topk(self.test_topk_per_image, sorted=False)
labels_per_image = labels[topk_indices]
topk_indices = topk_indices // self.sem_seg_head.num_classes
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
mask_pred = mask_pred[topk_indices]
# OPD
mask_mtype = mask_mtype[topk_indices]
pred_probs = F.softmax(mask_mtype, dim=1)
mask_mtype = torch.argmax(pred_probs, 1).float()
mask_morigin = mask_morigin[topk_indices]
mask_maxis = mask_maxis[topk_indices]
mask_mstate = mask_mstate[topk_indices]
mask_mstatemax = mask_mstatemax[topk_indices]
if self.motionnet_type == "BMOC_V1":
mask_extrinsic = mask_extrinsic[topk_indices]
mask_extrinsic = self.convert_to_valid_extrinsic(
mask_extrinsic, dim=1)
if self.voting != "none":
final_translation = torch.median(
mask_extrinsic[:, 9:12], axis=0)[0]
quaternions = matrix_to_quaternion(torch.transpose(
mask_extrinsic[:, :9].reshape(-1, 3, 3), 1, 2))
final_quaternion = self.votingProcess(quaternions, self.voting)
final_rotation = quaternion_to_matrix(final_quaternion)
final_rotation_vector = torch.flatten(
final_rotation.transpose(0, 1))
mask_extrinsic = torch.cat(
(final_rotation_vector, final_translation))
elif self.motionnet_type == "BMOC_V2":
mask_extrinsic = mask_extrinsic[topk_indices]
if self.voting != "none":
final_translation = torch.median(
mask_extrinsic[:, 4:7], axis=0)[0]
final_quaternion = self.votingProcess(
mask_extrinsic[:, :4], self.voting)
final_rotation = quaternion_to_matrix(final_quaternion)
final_rotation_vector = torch.flatten(
final_rotation.transpose(0, 1))
mask_extrinsic = torch.cat(
(final_rotation_vector, final_translation))
elif self.voting == "none":
translations = mask_extrinsic[:, 4:7]
quaternions = mask_extrinsic[:, :4]
rotation_vector = torch.flatten(
quaternion_to_matrix(quaternions).transpose(1, 2), 1)
mask_extrinsic = torch.cat((rotation_vector, translations), 1)
elif self.motionnet_type == "BMOC_V3":
mask_extrinsic = mask_extrinsic[topk_indices]
if self.voting != "none":
final_translation = torch.median(
mask_extrinsic[:, 6:9], axis=0)[0]
final_6d = self.votingProcess(
mask_extrinsic[:, :6], self.voting)
final_rotation = rotation_6d_to_matrix(final_6d)
final_rotation_vector = torch.flatten(
final_rotation.transpose(0, 1))
mask_extrinsic = torch.cat(
(final_rotation_vector, final_translation))
elif self.voting == "none":
translations = mask_extrinsic[:, 6:9]
rotation_6ds = mask_extrinsic[:, :6]
rotation_vector = torch.flatten(
rotation_6d_to_matrix(rotation_6ds).transpose(1, 2), 1)
mask_extrinsic = torch.cat((rotation_vector, translations), 1)
elif self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5":
translation = mask_extrinsic[4:7]
quaternion = mask_extrinsic[:4]
rotation_vector = torch.flatten(
quaternion_to_matrix(quaternion).transpose(0, 1))
mask_extrinsic = torch.cat((rotation_vector, translation))
elif self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V6":
mask_extrinsic = self.convert_to_valid_extrinsic(
mask_extrinsic, dim=0)
if "BMOC" in self.motionnet_type:
# Use the predicted extrinsic matrix to convert the predicted morigin and maxis back to camera coordinate
maxis_end = mask_morigin + mask_maxis
mextrinsic_c2w = torch.eye(4, device=mask_morigin.device).repeat(
mask_morigin.shape[0], 1, 1
)
if self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6" or (self.motionnet_type == "BMOC_V1" and self.voting != "none") or (self.motionnet_type == "BMOC_V2" and self.voting != "none") or (self.motionnet_type == "BMOC_V3" and self.voting != "none"):
mextrinsic_c2w[:, 0:3, 0:4] = torch.transpose(
mask_extrinsic.reshape(4, 3).repeat(
mask_morigin.shape[0], 1, 1), 1, 2
)
elif self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3":
mextrinsic_c2w[:, 0:3, 0:4] = torch.transpose(
mask_extrinsic.reshape(-1, 4, 3), 1, 2
)
mextrinsic_w2c = torch.inverse(mextrinsic_c2w)
mask_morigin = (
torch.matmul(
mextrinsic_w2c[:, :3,
:3], mask_morigin.unsqueeze(2)
).squeeze(2)
+ mextrinsic_w2c[:, :3, 3]
)
end_in_cam = (
torch.matmul(
mextrinsic_w2c[:, :3, :3], maxis_end.unsqueeze(2)
).squeeze(2)
+ mextrinsic_w2c[:, :3, 3]
)
mask_maxis = end_in_cam - mask_morigin
# if this is panoptic segmentation, we only keep the "thing" classes
if self.panoptic_on:
keep = torch.zeros_like(scores_per_image).bool()
for i, lab in enumerate(labels_per_image):
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values()
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
mask_pred = mask_pred[keep]
result = Instances(image_size)
# mask (before sigmoid)
result.pred_masks = (mask_pred > 0).float()
# result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
# Uncomment the following to get boxes from masks (this is slow)
result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
# calculate average mask prob
mask_scores_per_image = (mask_pred.sigmoid().flatten(
1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
result.scores = scores_per_image * mask_scores_per_image
result.pred_classes = labels_per_image
# OPD
result.mtype = mask_mtype
result.morigin = mask_morigin
result.maxis = mask_maxis
result.mstate = mask_mstate
result.mstatemax = mask_mstatemax
if self.motionnet_type == "BMOC_V0" or self.motionnet_type == "BMOC_V4" or self.motionnet_type == "BMOC_V5" or self.motionnet_type == "BMOC_V6" or (self.motionnet_type == "BMOC_V1" and self.voting != "none") or (self.motionnet_type == "BMOC_V2" and self.voting != "none") or (self.motionnet_type == "BMOC_V3" and self.voting != "none"):
result.mextrinsic = mask_extrinsic.repeat(mask_morigin.shape[0], 1)
elif self.motionnet_type == "BMOC_V1" or self.motionnet_type == "BMOC_V2" or self.motionnet_type == "BMOC_V3":
result.mextrinsic = mask_extrinsic
return result