Spaces:
Runtime error
Runtime error
import cv2 | |
import dlib | |
import streamlit as st | |
from PIL import Image | |
from transformers import pipeline | |
import numpy as np | |
# Load pre-trained image classification model from transformers library | |
model = pipeline("image-classification", model="0x70DA/down-syndrome-classifier") | |
# Load face detector from dlib library | |
detector = dlib.get_frontal_face_detector() | |
# Define the prediction function | |
def predict(image): | |
img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # Convert PIL Image to NumPy array | |
faces = detector(img) | |
if len(faces) > 0: | |
face = faces[0] # Assuming there's only one face in the image | |
x, y, w, h = face.left(), face.top(), face.width(), face.height() | |
cropped_face = img[y: y + h, x: x + w] | |
# Convert the cropped image to a PIL image | |
pil_image = Image.fromarray(cv2.cvtColor(cropped_face, cv2.COLOR_BGR2RGB)) | |
pred = model(pil_image) | |
return {o["label"]: o["score"] for o in pred} | |
return {"No Face Detected": 0.0} | |
# Create the Streamlit app interface | |
st.title("Down Syndrome Classifier") | |
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if uploaded_image is not None: | |
image = Image.open(uploaded_image) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
st.write("Classifying...") | |
result = predict(image) | |
st.write("Classification Results:") | |
for label, score in result.items(): | |
st.write(f"{label}: {score:.4f}") | |