import cv2 import dlib import streamlit as st from PIL import Image from transformers import pipeline import numpy as np # Load pre-trained image classification model from transformers library model = pipeline("image-classification", model="0x70DA/down-syndrome-classifier") # Load face detector from dlib library detector = dlib.get_frontal_face_detector() # Define the prediction function def predict(image): img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # Convert PIL Image to NumPy array faces = detector(img) if len(faces) > 0: face = faces[0] # Assuming there's only one face in the image x, y, w, h = face.left(), face.top(), face.width(), face.height() cropped_face = img[y: y + h, x: x + w] # Convert the cropped image to a PIL image pil_image = Image.fromarray(cv2.cvtColor(cropped_face, cv2.COLOR_BGR2RGB)) pred = model(pil_image) return {o["label"]: o["score"] for o in pred} return {"No Face Detected": 0.0} # Create the Streamlit app interface st.title("Down Syndrome Classifier") uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_image is not None: image = Image.open(uploaded_image) st.image(image, caption="Uploaded Image", use_column_width=True) st.write("Classifying...") result = predict(image) st.write("Classification Results:") for label, score in result.items(): st.write(f"{label}: {score:.4f}")