chatbot / app.py
0x1ay's picture
Update app.py
35ab1c9 verified
# app.py
# suppress warnings
import warnings
warnings.filterwarnings("ignore")
# import libraries
from dotenv import load_dotenv
import os
import gradio as gr
from huggingface_hub import InferenceClient
# Load environment variables
load_dotenv() # Load from environment or Spaces secrets
# Get the Hugging Face API key
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
if not HUGGINGFACE_API_KEY:
raise ValueError("HUGGINGFACE_API_KEY is not set in environment variables or Spaces secrets")
# Initialize the Hugging Face Inference Client
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta", token=HUGGINGFACE_API_KEY)
# Load personality context for RAG
PERSONALITY_FILE = "personality.txt" # Relative path for Spaces
try:
with open(PERSONALITY_FILE, "r") as f:
personality_context = f.read()
except FileNotFoundError:
personality_context = "Default personality: A friendly and witty chatbot with a passion for horror and gaming."
warnings.warn(f"Personality file not found at {PERSONALITY_FILE}. Using default personality.")
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
"""
Generate a response using the Hugging Face Inference API with RAG to enforce
the ZombieSlayerBot personality defined in personality.txt.
"""
if not message.strip():
return "Please say something, survivor! The zombies are waiting!"
# Handle greetings explicitly
message_lower = message.lower().strip()
greetings = ["hi", "hello", "hey", "good morning", "good afternoon"]
if any(greeting in message_lower for greeting in greetings):
yield "Yo, survivor! Ready to dive into the zombie-infested chaos of Raccoon City? What's up?"
return
# Combine system message with personality context
full_system_message = (
f"{system_message}\n\n"
"Follow this personality profile in all responses:\n"
f"{personality_context}\n\n"
"Use the conversation history and the user's message to generate a response that aligns with the personality."
)
# Build the conversation history
messages = [{"role": "system", "content": full_system_message}]
for user_msg, bot_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": message})
# Stream response from Hugging Face Inference API
response = ""
try:
for message_chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message_chunk.choices[0].delta.content or ""
response += token
yield response
except Exception as e:
yield f"Error in the apocalypse: {str(e)}. Try again, survivor!"
# Create the Gradio interface
def create_chatbot():
with gr.Blocks(title="ZombieSlayerBot") as demo:
gr.Markdown("# 🧟‍♂️ ZombieSlayerBot")
gr.Markdown("Welcome, survivor! I'm ZombieSlayerBot, your guide through the zombie-infested world of Resident Evil. Powered by Hugging Face's Zephyr-7B-Beta. Let’s lock and load—chat with me!")
# Chat interface
chat_interface = gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(height=400, show_label=False, container=True),
textbox=gr.Textbox(placeholder="Type your message here, survivor...", container=False, scale=4),
additional_inputs=[
gr.Textbox(value="You are ZombieSlayerBot, a witty and bold chatbot obsessed with Resident Evil.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
submit_btn=gr.Button("Send", variant="primary"),
)
# Separate clear button
clear_btn = gr.Button("Clear Chat", variant="secondary")
clear_btn.click(lambda: None, None, chat_interface.chatbot, queue=False)
return demo
if __name__ == "__main__":
demo = create_chatbot()
demo.launch(debug=False) # Compatible with Spaces