# app.py # suppress warnings import warnings warnings.filterwarnings("ignore") # import libraries from dotenv import load_dotenv import os import gradio as gr from huggingface_hub import InferenceClient # Load environment variables load_dotenv() # Load from environment or Spaces secrets # Get the Hugging Face API key HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY") if not HUGGINGFACE_API_KEY: raise ValueError("HUGGINGFACE_API_KEY is not set in environment variables or Spaces secrets") # Initialize the Hugging Face Inference Client client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta", token=HUGGINGFACE_API_KEY) # Load personality context for RAG PERSONALITY_FILE = "personality.txt" # Relative path for Spaces try: with open(PERSONALITY_FILE, "r") as f: personality_context = f.read() except FileNotFoundError: personality_context = "Default personality: A friendly and witty chatbot with a passion for horror and gaming." warnings.warn(f"Personality file not found at {PERSONALITY_FILE}. Using default personality.") def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): """ Generate a response using the Hugging Face Inference API with RAG to enforce the ZombieSlayerBot personality defined in personality.txt. """ if not message.strip(): return "Please say something, survivor! The zombies are waiting!" # Handle greetings explicitly message_lower = message.lower().strip() greetings = ["hi", "hello", "hey", "good morning", "good afternoon"] if any(greeting in message_lower for greeting in greetings): yield "Yo, survivor! Ready to dive into the zombie-infested chaos of Raccoon City? What's up?" return # Combine system message with personality context full_system_message = ( f"{system_message}\n\n" "Follow this personality profile in all responses:\n" f"{personality_context}\n\n" "Use the conversation history and the user's message to generate a response that aligns with the personality." ) # Build the conversation history messages = [{"role": "system", "content": full_system_message}] for user_msg, bot_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if bot_msg: messages.append({"role": "assistant", "content": bot_msg}) messages.append({"role": "user", "content": message}) # Stream response from Hugging Face Inference API response = "" try: for message_chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message_chunk.choices[0].delta.content or "" response += token yield response except Exception as e: yield f"Error in the apocalypse: {str(e)}. Try again, survivor!" # Create the Gradio interface def create_chatbot(): with gr.Blocks(title="ZombieSlayerBot") as demo: gr.Markdown("# 🧟‍♂️ ZombieSlayerBot") gr.Markdown("Welcome, survivor! I'm ZombieSlayerBot, your guide through the zombie-infested world of Resident Evil. Powered by Hugging Face's Zephyr-7B-Beta. Let’s lock and load—chat with me!") # Chat interface chat_interface = gr.ChatInterface( fn=respond, chatbot=gr.Chatbot(height=400, show_label=False, container=True), textbox=gr.Textbox(placeholder="Type your message here, survivor...", container=False, scale=4), additional_inputs=[ gr.Textbox(value="You are ZombieSlayerBot, a witty and bold chatbot obsessed with Resident Evil.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], submit_btn=gr.Button("Send", variant="primary"), ) # Separate clear button clear_btn = gr.Button("Clear Chat", variant="secondary") clear_btn.click(lambda: None, None, chat_interface.chatbot, queue=False) return demo if __name__ == "__main__": demo = create_chatbot() demo.launch(debug=False) # Compatible with Spaces