|
--- |
|
license: apache-2.0 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
- generated_from_trainer |
|
datasets: |
|
- squad |
|
- newsqa |
|
- LLukas22/cqadupstack |
|
- LLukas22/fiqa |
|
- LLukas22/scidocs |
|
- deepset/germanquad |
|
- LLukas22/nq |
|
language: |
|
- en |
|
- de |
|
--- |
|
|
|
# paraphrase-multilingual-mpnet-base-v2-embedding-all |
|
|
|
This model is a fine-tuned version of [paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the following datasets: [squad](https://huggingface.co/datasets/squad), [newsqa](https://huggingface.co/datasets/newsqa), [LLukas22/cqadupstack](https://huggingface.co/datasets/LLukas22/cqadupstack), [LLukas22/fiqa](https://huggingface.co/datasets/LLukas22/fiqa), [LLukas22/scidocs](https://huggingface.co/datasets/LLukas22/scidocs), [deepset/germanquad](https://huggingface.co/datasets/deepset/germanquad), [LLukas22/nq](https://huggingface.co/datasets/LLukas22/nq). |
|
|
|
|
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('LLukas22/paraphrase-multilingual-mpnet-base-v2-embedding-all') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## Training hyperparameters |
|
The following hyperparameters were used during training: |
|
|
|
- learning_rate: 1E+00 |
|
- per device batch size: 40 |
|
- effective batch size: 120 |
|
- seed: 42 |
|
- optimizer: AdamW with betas (0.9,0.999) and eps 1E-08 |
|
- weight decay: 2E-02 |
|
- D-Adaptation: True |
|
- Warmup: True |
|
- number of epochs: 15 |
|
- mixed_precision_training: bf16 |
|
|
|
## Training results |
|
| Epoch | Train Loss | Validation Loss | |
|
| ----- | ---------- | --------------- | |
|
| 0 | 0.085 | 0.0625 | |
|
| 1 | 0.0598 | 0.0554 | |
|
| 2 | 0.0484 | 0.0518 | |
|
| 3 | 0.0405 | 0.0485 | |
|
| 4 | 0.0341 | 0.0463 | |
|
| 5 | 0.0287 | 0.0454 | |
|
| 6 | 0.0243 | 0.0445 | |
|
| 7 | 0.0207 | 0.0426 | |
|
| 8 | 0.0177 | 0.0424 | |
|
| 9 | 0.0153 | 0.0421 | |
|
| 10 | 0.0134 | 0.0417 | |
|
| 11 | 0.012 | 0.0411 | |
|
| 12 | 0.011 | 0.0414 | |
|
|
|
## Evaluation results |
|
| Epoch | top_1 | top_3 | top_5 | top_10 | top_25 | |
|
| ----- | ----- | ----- | ----- | ----- | ----- | |
|
| 0 | 0.261 | 0.351 | 0.384 | 0.422 | 0.459 | |
|
| 1 | 0.272 | 0.365 | 0.4 | 0.439 | 0.477 | |
|
| 2 | 0.276 | 0.37 | 0.404 | 0.443 | 0.481 | |
|
| 3 | 0.292 | 0.391 | 0.426 | 0.465 | 0.503 | |
|
| 4 | 0.295 | 0.395 | 0.431 | 0.47 | 0.51 | |
|
| 5 | 0.299 | 0.4 | 0.437 | 0.476 | 0.514 | |
|
| 6 | 0.306 | 0.404 | 0.44 | 0.478 | 0.515 | |
|
| 7 | 0.309 | 0.41 | 0.445 | 0.485 | 0.521 | |
|
| 8 | 0.31 | 0.411 | 0.448 | 0.487 | 0.524 | |
|
| 9 | 0.315 | 0.417 | 0.454 | 0.493 | 0.529 | |
|
| 10 | 0.319 | 0.42 | 0.457 | 0.495 | 0.53 | |
|
| 11 | 0.323 | 0.424 | 0.46 | 0.497 | 0.531 | |
|
| 12 | 0.324 | 0.427 | 0.464 | 0.501 | 0.536 | |
|
|
|
## Framework versions |
|
- Transformers: 4.25.1 |
|
- PyTorch: 2.0.0.dev20230210+cu118 |
|
- PyTorch Lightning: 1.8.6 |
|
- Datasets: 2.7.1 |
|
- Tokenizers: 0.13.1 |
|
- Sentence Transformers: 2.2.2 |
|
|
|
## Additional Information |
|
This model was trained as part of my Master's Thesis **'Evaluation of transformer based language models for use in service information systems'**. The source code is available on [Github](https://github.com/LLukas22/Retrieval-Augmented-QA). |