license: apache-2.0
tags:
- null
datasets:
- EXIST Dataset
- MeTwo Machismo and Sexism Twitter Identification dataset
metrics:
- accuracy
model-index:
- name: twitter_sexismo-finetuned-exist2021
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: EXIST Dataset
type: EXIST Dataset
args: es
metrics:
- name: Accuracy
type: accuracy
value: 0.83
twitter_sexismo-finetuned-exist2021
This model is a fine-tuned version of pysentimiento/robertuito-hate-speech on the EXIST dataset and MeTwo: Machismo and Sexism Twitter Identification dataset https://github.com/franciscorodriguez92/MeTwo. It achieves the following results on the evaluation set:
- Loss: 0.54
- Accuracy: 0.83
Model description
Modelo para el Hackaton de Somos NLP para detección de sexismo en twitts en español. Creado por:
medardodt
MariaIsabel
ManRo
lucel172
robertou2
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- my_learning_rate = 5E-5
- my_adam_epsilon = 1E-8
- my_number_of_epochs = 8
- my_warmup = 3
- my_mini_batch_size = 32
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Epoch Training Loss Validation Loss Accuracy F1 Precision Recall
1 0.389900 0.397857 0.827133 0.699620 0.786325 0.630137
2 0.064400 0.544625 0.831510 0.707224 0.794872 0.636986
3 0.004800 0.837723 0.818381 0.704626 0.733333 0.678082
4 0.000500 1.045066 0.820569 0.702899 0.746154 0.664384
5 0.000200 1.172727 0.805252 0.669145 0.731707 0.616438
6 0.000200 1.202422 0.827133 0.720848 0.744526 0.698630
7 0.000000 1.195012 0.827133 0.718861 0.748148 0.691781
8 0.000100 1.215515 0.824945 0.705882 0.761905 0.657534
9 0.000100 1.233099 0.827133 0.710623 0.763780 0.664384
10 0.000100 1.237268 0.829322 0.713235 0.769841 0.664384
Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Tokenizers 0.11.6
Model in Action
Fast usage with pipelines:
###libraries required !pip install transformers from transformers import pipeline
usage pipelines
model_checkpoint = "hackathon-pln-es/twitter_sexismo-finetuned-exist2021-metwo" pipeline_nlp = pipeline("text-classification", model=model_checkpoint) pipeline_nlp("mujer al volante peligro!") #pipeline_nlp("¡me encanta el ipad!") #pipeline_nlp (["mujer al volante peligro!", "Los hombre tienen más manias que las mujeres", "me encanta el ipad!"] )
OUTPUT MODEL
LABEL_0: "NON SEXISM", LABEL_1: "SEXISM" score: probability of accuracy per model
[{'label': 'LABEL_1', 'score': 0.9967633485794067}]
[{'label': 'LABEL_0', 'score': 0.9934417009353638}]
#[{‘label': 'LABEL_1', 'score': 0.9967633485794067},