ManRo's picture
Update README.md
af584d6
|
raw
history blame
3.15 kB
metadata
license: apache-2.0
tags:
  - null
datasets:
  - EXIST Dataset
  - MeTwo Machismo and Sexism Twitter Identification dataset
metrics:
  - accuracy
model-index:
  - name: twitter_sexismo-finetuned-exist2021
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: EXIST Dataset
          type: EXIST Dataset
          args: es
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.83

twitter_sexismo-finetuned-exist2021

This model is a fine-tuned version of pysentimiento/robertuito-hate-speech on the EXIST dataset and MeTwo: Machismo and Sexism Twitter Identification dataset https://github.com/franciscorodriguez92/MeTwo. It achieves the following results on the evaluation set:

  • Loss: 0.54
  • Accuracy: 0.83

Model description

Modelo para el Hackaton de Somos NLP para detección de sexismo en twitts en español. Creado por:

medardodt

MariaIsabel

ManRo

lucel172

robertou2

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • my_learning_rate = 5E-5
  • my_adam_epsilon = 1E-8
  • my_number_of_epochs = 8
  • my_warmup = 3
  • my_mini_batch_size = 32
  • optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Epoch Training Loss Validation Loss Accuracy F1 Precision Recall

1 0.389900 0.397857 0.827133 0.699620 0.786325 0.630137

2 0.064400 0.544625 0.831510 0.707224 0.794872 0.636986

3 0.004800 0.837723 0.818381 0.704626 0.733333 0.678082

4 0.000500 1.045066 0.820569 0.702899 0.746154 0.664384

5 0.000200 1.172727 0.805252 0.669145 0.731707 0.616438

6 0.000200 1.202422 0.827133 0.720848 0.744526 0.698630

7 0.000000 1.195012 0.827133 0.718861 0.748148 0.691781

8 0.000100 1.215515 0.824945 0.705882 0.761905 0.657534

9 0.000100 1.233099 0.827133 0.710623 0.763780 0.664384

10 0.000100 1.237268 0.829322 0.713235 0.769841 0.664384

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu111
  • Tokenizers 0.11.6

Model in Action

Fast usage with pipelines:

###libraries required !pip install transformers from transformers import pipeline

usage pipelines

model_checkpoint = "hackathon-pln-es/twitter_sexismo-finetuned-exist2021-metwo" pipeline_nlp = pipeline("text-classification", model=model_checkpoint) pipeline_nlp("mujer al volante peligro!") #pipeline_nlp("¡me encanta el ipad!") #pipeline_nlp (["mujer al volante peligro!", "Los hombre tienen más manias que las mujeres", "me encanta el ipad!"] )

OUTPUT MODEL

LABEL_0: "NON SEXISM", LABEL_1: "SEXISM" score: probability of accuracy per model

[{'label': 'LABEL_1', 'score': 0.9967633485794067}]

[{'label': 'LABEL_0', 'score': 0.9934417009353638}]

#[{‘label': 'LABEL_1', 'score': 0.9967633485794067},

{'label': 'LABEL_1', 'score': 0.9755664467811584},

{'label': 'LABEL_0', 'score': 0.9955045580863953}]