|
|
""" |
|
|
Kimi-K2 Model Implementation for nanoKimi |
|
|
|
|
|
This is the main model implementation that combines all the Kimi-K2 innovations: |
|
|
- Latent Attention for memory efficiency |
|
|
- Mixture of Experts for sparse scaling |
|
|
- Compatible with Muon optimizer |
|
|
""" |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
import math |
|
|
import inspect |
|
|
|
|
|
from attention import LatentAttention, MultiHeadAttention |
|
|
from moe import MoELayer, StandardFFN |
|
|
|
|
|
|
|
|
class LayerNorm(nn.Module): |
|
|
"""LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False""" |
|
|
|
|
|
def __init__(self, ndim, bias): |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(ndim)) |
|
|
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None |
|
|
|
|
|
def forward(self, input): |
|
|
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) |
|
|
|
|
|
|
|
|
class KimiBlock(nn.Module): |
|
|
""" |
|
|
Kimi-K2 Transformer Block |
|
|
|
|
|
Combines the innovations of Kimi-K2: |
|
|
- Latent Attention (optional) |
|
|
- Mixture of Experts (optional) |
|
|
- Standard layer normalization and residual connections |
|
|
""" |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
self.ln_1 = LayerNorm(config['n_embd'], bias=config['bias']) |
|
|
self.ln_2 = LayerNorm(config['n_embd'], bias=config['bias']) |
|
|
|
|
|
|
|
|
if config.get('use_latent_attention', False): |
|
|
self.attn = LatentAttention( |
|
|
n_embd=config['n_embd'], |
|
|
n_head=config['n_head'], |
|
|
latent_dim=config.get('latent_dim', 64), |
|
|
dropout=config['dropout'], |
|
|
bias=config['bias'] |
|
|
) |
|
|
else: |
|
|
self.attn = MultiHeadAttention( |
|
|
n_embd=config['n_embd'], |
|
|
n_head=config['n_head'], |
|
|
dropout=config['dropout'], |
|
|
bias=config['bias'] |
|
|
) |
|
|
|
|
|
|
|
|
if config.get('use_moe', False): |
|
|
self.mlp = MoELayer( |
|
|
n_embd=config['n_embd'], |
|
|
num_experts=config.get('num_experts', 8), |
|
|
expert_capacity=config.get('expert_capacity', 32), |
|
|
top_k=config.get('top_k_experts', 2), |
|
|
dropout=config['dropout'], |
|
|
bias=config['bias'] |
|
|
) |
|
|
else: |
|
|
self.mlp = StandardFFN( |
|
|
n_embd=config['n_embd'], |
|
|
dropout=config['dropout'], |
|
|
bias=config['bias'] |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
x = x + self.attn(self.ln_1(x)) |
|
|
|
|
|
|
|
|
mlp_out, load_balance_loss = self.mlp(self.ln_2(x)) |
|
|
x = x + mlp_out |
|
|
|
|
|
return x, load_balance_loss |
|
|
|
|
|
|
|
|
class KimiK2(nn.Module): |
|
|
""" |
|
|
Kimi-K2 Model |
|
|
|
|
|
A transformer model incorporating the key innovations from Kimi-K2: |
|
|
- Latent Attention for memory efficiency |
|
|
- Mixture of Experts for sparse scaling |
|
|
- Optimized for use with Muon optimizer |
|
|
""" |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
assert config['vocab_size'] is not None |
|
|
assert config['block_size'] is not None |
|
|
self.config = config |
|
|
|
|
|
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
|
wte = nn.Embedding(config['vocab_size'], config['n_embd']), |
|
|
wpe = nn.Embedding(config['block_size'], config['n_embd']), |
|
|
drop = nn.Dropout(config['dropout']), |
|
|
h = nn.ModuleList([KimiBlock(config) for _ in range(config['n_layer'])]), |
|
|
ln_f = LayerNorm(config['n_embd'], bias=config['bias']), |
|
|
)) |
|
|
self.lm_head = nn.Linear(config['n_embd'], config['vocab_size'], bias=False) |
|
|
|
|
|
|
|
|
self.transformer.wte.weight = self.lm_head.weight |
|
|
|
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
|
|
|
for pn, p in self.named_parameters(): |
|
|
if pn.endswith('o_proj.weight'): |
|
|
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config['n_layer'])) |
|
|
|
|
|
|
|
|
print("Number of parameters: %.2fM" % (self.get_num_params()/1e6,)) |
|
|
|
|
|
def get_num_params(self, non_embedding=True): |
|
|
""" |
|
|
Return the number of parameters in the model. |
|
|
For non-embedding count (default), the position embeddings get subtracted. |
|
|
The token embeddings would too, except due to the parameter sharing these |
|
|
params are actually used as weights in the final layer, so we include them. |
|
|
""" |
|
|
n_params = sum(p.numel() for p in self.parameters()) |
|
|
if non_embedding: |
|
|
n_params -= self.transformer.wpe.weight.numel() |
|
|
return n_params |
|
|
|
|
|
def _init_weights(self, module): |
|
|
if isinstance(module, nn.Linear): |
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
if module.bias is not None: |
|
|
torch.nn.init.zeros_(module.bias) |
|
|
elif isinstance(module, nn.Embedding): |
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
|
|
def forward(self, idx, targets=None): |
|
|
device = idx.device |
|
|
b, t = idx.size() |
|
|
assert t <= self.config['block_size'], f"Cannot forward sequence of length {t}, block size is only {self.config['block_size']}" |
|
|
pos = torch.arange(0, t, dtype=torch.long, device=device) |
|
|
|
|
|
|
|
|
tok_emb = self.transformer.wte(idx) |
|
|
pos_emb = self.transformer.wpe(pos) |
|
|
x = self.transformer.drop(tok_emb + pos_emb) |
|
|
|
|
|
|
|
|
total_load_balance_loss = 0.0 |
|
|
|
|
|
for block in self.transformer.h: |
|
|
x, load_balance_loss = block(x) |
|
|
total_load_balance_loss += load_balance_loss |
|
|
|
|
|
x = self.transformer.ln_f(x) |
|
|
|
|
|
if targets is not None: |
|
|
|
|
|
logits = self.lm_head(x) |
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
|
|
|
|
|
|
|
loss = loss + total_load_balance_loss |
|
|
else: |
|
|
|
|
|
logits = self.lm_head(x[:, [-1], :]) |
|
|
loss = None |
|
|
|
|
|
return logits, loss |
|
|
|
|
|
def crop_block_size(self, block_size): |
|
|
|
|
|
|
|
|
|
|
|
assert block_size <= self.config['block_size'] |
|
|
self.config['block_size'] = block_size |
|
|
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size]) |
|
|
for block in self.transformer.h: |
|
|
if hasattr(block.attn, 'bias'): |
|
|
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size] |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained(cls, model_type, override_args=None): |
|
|
""" |
|
|
Initialize a pretrained GPT model by copying over the weights |
|
|
from a huggingface/transformers checkpoint. |
|
|
""" |
|
|
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} |
|
|
override_args = override_args or {} |
|
|
|
|
|
assert all(k == 'dropout' for k in override_args) |
|
|
from transformers import GPT2LMHeadModel |
|
|
print("loading weights from pretrained gpt: %s" % model_type) |
|
|
|
|
|
|
|
|
config_args = { |
|
|
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), |
|
|
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), |
|
|
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), |
|
|
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), |
|
|
}[model_type] |
|
|
print("forcing vocab_size=50257, block_size=1024, bias=True") |
|
|
config_args['vocab_size'] = 50257 |
|
|
config_args['block_size'] = 1024 |
|
|
config_args['bias'] = True |
|
|
|
|
|
if 'dropout' in override_args: |
|
|
print(f"overriding dropout rate to {override_args['dropout']}") |
|
|
config_args['dropout'] = override_args['dropout'] |
|
|
|
|
|
|
|
|
model = cls(config_args) |
|
|
sd = model.state_dict() |
|
|
sd_keys = sd.keys() |
|
|
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] |
|
|
|
|
|
|
|
|
model_hf = GPT2LMHeadModel.from_pretrained(model_type) |
|
|
sd_hf = model_hf.state_dict() |
|
|
|
|
|
|
|
|
sd_keys_hf = sd_hf.keys() |
|
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] |
|
|
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] |
|
|
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] |
|
|
|
|
|
|
|
|
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" |
|
|
for k in sd_keys_hf: |
|
|
if any(k.endswith(w) for w in transposed): |
|
|
|
|
|
assert sd_hf[k].shape[::-1] == sd[k].shape |
|
|
with torch.no_grad(): |
|
|
sd[k].copy_(sd_hf[k].t()) |
|
|
else: |
|
|
|
|
|
assert sd_hf[k].shape == sd[k].shape |
|
|
with torch.no_grad(): |
|
|
sd[k].copy_(sd_hf[k]) |
|
|
|
|
|
return model |
|
|
|
|
|
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): |
|
|
""" |
|
|
This long function is unfortunately doing something very simple and is being very defensive: |
|
|
We are separating out all parameters of the model into two buckets: those that will experience |
|
|
weight decay for regularization and those that won't (biases, and layernorm/embedding weights). |
|
|
We are then returning the PyTorch optimizer object. |
|
|
""" |
|
|
|
|
|
|
|
|
decay = set() |
|
|
no_decay = set() |
|
|
whitelist_weight_modules = (torch.nn.Linear, ) |
|
|
blacklist_weight_modules = (torch.nn.LayerNorm, LayerNorm, torch.nn.Embedding) |
|
|
for mn, m in self.named_modules(): |
|
|
for pn, p in m.named_parameters(): |
|
|
fpn = '%s.%s' % (mn, pn) if mn else pn |
|
|
|
|
|
|
|
|
|
|
|
if pn.endswith('bias'): |
|
|
|
|
|
no_decay.add(fpn) |
|
|
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): |
|
|
|
|
|
decay.add(fpn) |
|
|
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): |
|
|
|
|
|
no_decay.add(fpn) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
decay.discard('lm_head.weight') |
|
|
|
|
|
|
|
|
param_dict = {pn: p for pn, p in self.named_parameters()} |
|
|
inter_params = decay & no_decay |
|
|
union_params = decay | no_decay |
|
|
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) |
|
|
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ |
|
|
% (str(param_dict.keys() - union_params), ) |
|
|
|
|
|
|
|
|
optim_groups = [ |
|
|
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": weight_decay}, |
|
|
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, |
|
|
] |
|
|
|
|
|
use_fused = (device_type == 'cuda') and ('fused' in inspect.signature(torch.optim.AdamW).parameters) |
|
|
print(f"using fused AdamW: {use_fused}") |
|
|
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, fused=use_fused) |
|
|
return optimizer |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): |
|
|
""" |
|
|
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete |
|
|
the sequence max_new_tokens times, feeding the predictions back into the model each time. |
|
|
Most likely you'll want to make sure to be in model.eval() mode of operation for this. |
|
|
""" |
|
|
for _ in range(max_new_tokens): |
|
|
|
|
|
idx_cond = idx if idx.size(1) <= self.config['block_size'] else idx[:, -self.config['block_size']:] |
|
|
|
|
|
logits, _ = self(idx_cond) |
|
|
|
|
|
logits = logits[:, -1, :] / temperature |
|
|
|
|
|
if top_k is not None: |
|
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
|
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
|
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
|
|
|
return idx |
|
|
|