Update readme
Browse files
README.md
CHANGED
@@ -6,13 +6,13 @@ Dense Passage Retrieval (`DPR`)
|
|
6 |
|
7 |
Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih, [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906), EMNLP 2020.
|
8 |
|
9 |
-
This model is the context encoder of DPR trained on TriviaQA using the [official implementation of DPR](https://github.com/facebookresearch/DPR).
|
10 |
|
11 |
-
Disclaimer: This model is not from the authors of DPR
|
12 |
|
13 |
## Performance
|
14 |
|
15 |
-
The
|
16 |
|
17 |
The values in parentheses are those reported in the paper.
|
18 |
|
@@ -38,4 +38,4 @@ ctx_encoder = DPRContextEncoder.from_pretrained("soheeyang/dpr-ctx_encoder-singl
|
|
38 |
|
39 |
data = tokenizer("context comes here", return_tensors="pt")
|
40 |
ctx_embedding = ctx_encoder(**data).pooler_output # embedding vector for context
|
41 |
-
```
|
|
|
6 |
|
7 |
Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih, [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906), EMNLP 2020.
|
8 |
|
9 |
+
This model is the context encoder of DPR trained solely on TriviaQA (single-trivia) using the [official implementation of DPR](https://github.com/facebookresearch/DPR).
|
10 |
|
11 |
+
Disclaimer: This model is not from the authors of DPR, but my reproduction. The authors did not release the DPR weights trained solely on TriviaQA. I hope this model checkpoint can be helpful for those who want to use DPR trained only on TriviaQA.
|
12 |
|
13 |
## Performance
|
14 |
|
15 |
+
The following is the answer recall rate measured using PyTorch 1.4.0 and transformers 4.5.0.
|
16 |
|
17 |
The values in parentheses are those reported in the paper.
|
18 |
|
|
|
38 |
|
39 |
data = tokenizer("context comes here", return_tensors="pt")
|
40 |
ctx_embedding = ctx_encoder(**data).pooler_output # embedding vector for context
|
41 |
+
```
|